Skip to main content
Log in

Enhancement of the magneto-optical Kerr rotation in nonlinear optical response

  • Surfaces And Multilayers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using an electronic theory we calculate the magneto-optical Kerr rotation in Second-Harmonic Generation (SHG). We derive Fresnel's formulas for the nonlinear optical response. Mathematical details of the derivation are given. For the longitudinal and polar Kerr configuration and for arbitrary angles of incidence it is found that the Kerr angle in SHG may be enhanced by up to one order of magnitude compared to the linear Kerr angle. This enhancement is caused by interband and intraband transitions (plasmons) which in the linear case suppress the Kerr rotation in the optical range. Our results will be useful for a microscopic study of 2D magnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Spierings, V. Koutsos, H.A. Wierenga, M.W.J. Prins, D. Abraham, Th. Rasing: Surf. Sci. 287/288, 747 (1993); J. Magn. Magn. Mater. 121, 109 (1993)

    Google Scholar 

  2. O. A. Aktsipetrov, O. V. Braginskii, D. A. Esikov: Sov. J. Quantum Electron. 20, 259 (1990)

    Google Scholar 

  3. J. Reif, J. C. Zink, C.-M. Schneider, J. Kirschner: Phys. Rev. Lett. 67, 2878 (1991)

    Google Scholar 

  4. J. Reif, C. Rau, E. Matthias: Phys. Rev. Lett. 71, 1931 (1993)

    Google Scholar 

  5. L. M. Falicov, D. T. Pierce, S. D. Bader, R. Gronsky, K. B. Hathaway, H. Hopster, D. N. Lambeth, S. S. P. Parkin, G. A. Prinz, M. B. Salamon, I. K. Schuller, R. H. Victora: J. Mater. Res. 5, 1299 (1990)

    Google Scholar 

  6. P. M. Oppeneer, T. Maurer, J. Sticht, J. Kübler: Phys. Rev. B 45, 10924 (1992)

    Google Scholar 

  7. R. A. de Groot and F. M. Mueller: Phys. Rev. Lett. 50, 2024 (1983)

    Google Scholar 

  8. P. A. M. van der Heide et al.: J. Phys. F 15, L75 (1985)

  9. W. Reim et al.: J. Magn. Magn. Mater. 54–57, 1401 (1986)

    Google Scholar 

  10. G. H. O. Daalderop et al.: J. Magn. Magn. Mater. 74, 211 (1988)

    Google Scholar 

  11. J. H. Wijngaard, C. Haas, R. A. de Groot: Phys. Rev. B 40, 9318 (1989)

    Google Scholar 

  12. U. Pustogowa, W. Hübner, K. H. Bennemann: Phys. Rev. B 48, 8607 (1993)

    Google Scholar 

  13. Note, this introduction of the Kerr angle makes in the nonlinear case essentially only sense for p-polarized incident light, since SH yield is predominantly p-polarized

  14. N. Bloembergen, P. S. Pershan: Phys. Rev. 128, 606 (1962)

    Google Scholar 

  15. Note, this corresponds in [10] to setting α = π − θ S

  16. Note that ε S in the denominator of the second term of [Ref. 10, Eq.(4.12)] has to be replaced by ε R

  17. G. S. Krinchik, V. A. Artem'ev: Zh. Eksp. Teor. Fiz. 53, 1901 (1967); [Sov. Phys. JETP 26, 1080 (1968)]; J. Appl. Phys. 39, 1276 (1968)

    Google Scholar 

  18. H. Feil, C. Haas: Phys. Rev. Lett. 58, 65 (1987)

    Google Scholar 

  19. However, since the interband contributions should disappear for θ → 0, one must replace the factor λ s.o. /hω by λ s.o. /hω1 for ω → 0, where hω1 refers to the minimum interband transition energy

  20. K. Böhmer, E. Matthias: (private communication)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pustogowa, U., Hübner, W. & Bennemann, K.H. Enhancement of the magneto-optical Kerr rotation in nonlinear optical response. Appl. Phys. A 59, 611–615 (1994). https://doi.org/10.1007/BF00331921

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331921

PACS

Navigation