Skip to main content
Log in

Photon emission from adsorbed C60 molecules with sub-nanometer lateral resolution

  • Surface Physics 1993
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present the first experimental demonstration of spatially resolved photon emission of individual molecules on a surface. A scanning tunneling microscope (STM) was used as a local electron source to excite photon emission from hexagonal arrays of C60 molecules on Au(110) surfaces. Specifically, we show that in maps of photon emission intensities, C60 fullerenes appear as arrays of individual light emitters 4 Å in diameter and separated by 10 Å. Comparison with simultaneously recorded STM images reveals, that most intense emission is detected when the STM tip is centered above a molecule. The results demonstrate the highest spatial resolution of light emission to date using a scanning probe technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Behm, N. Garcia, H. Rohrer (eds.): Scanning Tunneling Microscopy and Related Methods. NATO Advanced Studies Institutes Series E, Vol. 184 (Kluwer, Dordrecht 1990)

    Google Scholar 

  2. H.-J. Güntherodt, R. Wiesendanger (eds.): Scanning Tunneling Microscopy, Springer Ser. Surf. Sci., Vol. 20 (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

  3. J.A. Stroscio, D.M. Eigler; Science 254, 1319 (1991)

    Google Scholar 

  4. J.H. Coombs, J.K. Gimzewski, B. Reihl, J.K. Sass, R.R. Schlittler; J. Microsc. 152, 325 (1988)

    Google Scholar 

  5. K. Prassides, H. Kroto; Phys. World 5, 44 (1992)

    Google Scholar 

  6. T. Hashizume, X. Wang, Y. Nishina, H. Shinohara, Y. Saito, Y. Kuk, T. Sakurai: Jpn. J. Appl. Phys. 31, L880 (1992)

  7. Y.Z. Li, M. Chander, J.C. Patrin, J.H. Weaver, L.P.F. Chibante, R.E. Smalley: Science 252, 547 (1991)

    Google Scholar 

  8. H.P. Lang, V. Thommen-Geiser, J. Frommer, A. Zahab, P. Bernier, H.-J. Güntherodt: Europhys. Lett. 18, 29 (1992)

    Google Scholar 

  9. J.L. Wragg, J.E. Chamberlain, H.W. White, W. Krätschmer, D.R. Huffmann: Nature 348, 623 (1990)

    Google Scholar 

  10. R.J. Wilson, G. Meijer, D.S. Bethune, R.D. Johnson, D.D. Chambliss, M.S. de Vries, H.E. Hunziker, H.R. Wendt: Nature 348, 621 (1990)

    Google Scholar 

  11. E.I. Altman, R.J. Colton: Surf. Sci. 279, 49 (1992)

    Google Scholar 

  12. T. Chen, S. Howells, M. Gallagher, D. Sarid, L.D. Lamb, D.R. Huffman, R.K. Workman: Phys. Rev. B 45, 14411 (1992)

    Google Scholar 

  13. R. Gaisch, J.K. Gimzewski, B. Reihl, R.R. Schlittler, M. Tschudy, W.D. Schneider: Ultramicroscopy 42–44, 1621 (1992)

    Google Scholar 

  14. R. Berndt, R.R. Schlittler, J.K. Gimzewski: J. Vac. Sci. Technol. B 9, 573 (1991)

    Google Scholar 

  15. J.K. Gimzewski, R. Berndt, R.R. Schlittler: Phys. Rev. B 45, 6844 (1992)

    Google Scholar 

  16. J.K. Gimzewski, R.R. Schlittler, S. Modesti: In preparation

  17. R. Gaisch, R. Berndt, J.K. Gimzewski, B. Reihl, R.R. Schlittler, W.D. Schneider, M. Tschudy: Appl. Phys. A 57, 207 (1993)

    Google Scholar 

  18. R. Berndt, J.K. Gimzewski, R.R. Schlittler: Ultramicroscopy 42–44, 355 (1992)

    Google Scholar 

  19. R. Berndt, J.K. Gimzewski, P. Johansson: Phys. Rev. Lett. 67, 3796 (1991)

    Google Scholar 

  20. P Johansson, R. Monreal, P. Apell: Phys. Rev. B 42, 9210 (1990)

    Google Scholar 

  21. B.N.J. Persson, A. Baratoff: Phys. Rev. Lett. 68, 3224 (1992)

    Google Scholar 

  22. For an Ag tip on an Ag sample which gives rise to the most intense photon emission observed as yet, less than 10−3 photons are emitted per tunneling electron. Therefore, this component of the inelastic current is negligible compared to the noise of the total current. For other inelastic processes, see e.g:

  23. B.N.J. Persson, J.E. Demuth: Solid State Commun. 57, 769 (1986)

    Google Scholar 

  24. A. Otto, I. Mrozek, H. Grabhorn, W. Akemann: J. Phys. Condens. Matter 4, 1143 (1992)

    Google Scholar 

  25. R. Berndt: Dissertation, University of Basle (1992)

  26. R. Berndt, J.K. Gimzewski, P. Johansson: To be published

  27. C. Reber, L. Yee, J. McKiernan, J.I. Zink, R.S. Williams, W.M. Tong, D.A.A. Ohlberg, R.L. Whetten, F. Diederich: J. Phys. Chem. 95, 2127 (1991)

    Google Scholar 

  28. M. Matus, H. Kuzmany, E. Sohmen: Phys. Rev. Lett. 68, 2822 (1992)

    Google Scholar 

  29. A.T. Werner, H.J. Bryne, J. Anders, W.K. Maser, M. Kaiser, W.W. Rühle, A. Mittelbach, S. Roth: Europhysics Conf. Abstr. A 17, 1854 (1993)

    Google Scholar 

  30. Note that the tunneling voltage (V t=−2.8 V) places an upper limit on the energy of the emitted photons

  31. A. Lucas, G. Gensterblum, J.J. Pireaux, P.A. Thiry, R. Caudano, J.P. Vigneron, Ph. Lambin, W. Krätschmer: Phys. Rev. B 45, 13694 (1992)

    Google Scholar 

  32. M.T. Michalewicz, M.P. Das: Solid State Commun. 84, 1121 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berndt, R., Gaisch, R., Schneider, W.D. et al. Photon emission from adsorbed C60 molecules with sub-nanometer lateral resolution. Appl. Phys. A 57, 513–516 (1993). https://doi.org/10.1007/BF00331750

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331750

PACS

Navigation