Skip to main content
Log in

The formation of subsurface oxygen on Pt(100)

  • Surface Physics 1993
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

PhotoEmission Electron Microscopy (PEEM) enables imaging a surface via its work function. If a CO covered Pt(100) surface is exposed to oxygen patches are formed which appear dark in the PEEM image due to their high work function. As the surface is heated to temperatures above 650 K we observe the conversion of these dark islands into very bright ones with work functions much lower than even that of the clean surface. These findings are attributed to a change in the dipole moment of the adsorbed oxygen induced by their migration beneath the surface. A total work-function decrease of up to 1.2 eV has been evaluated independently using a Scanning Photoemission Microscope (SPM). The properties of this new kind of oxygen were also further investigated with thermal desorption spectroscopy and with Auger-electron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.H. Rotermund, S. Jakubith, A. v. Oertzen, G. Ertl: J. Chem. Phys. 91, 4942 (1989)

    Google Scholar 

  2. H.H. Rotermund, W. Engel, M. Kordesch, G. Ertl: Nature 343, 355 (1990)

    Google Scholar 

  3. W. Engel, M.E. Kordesch, H.H. Rotermund, S. Kubala, A. v. Oertzen: Ultramicroscopy 36, 148 (1991)

    Google Scholar 

  4. R. Imbihl: In Optimal Structures in Heterogeneous Reaction Systems, ed. by P.J. Plath, Springer Ser. Synergetics, Vol. 44 (Springer, Berlin, Heidelberg 1989) p. 26

    Google Scholar 

  5. S. Ladas, R. Imbihl, G. Ertl: Surf. Sci. 219, 88 (1989)

    Google Scholar 

  6. J.E. Turner, B.C. Sales, M.B. Maple: Surf. Sci. 103, 54 (1980)

    Google Scholar 

  7. C.E. Smith, J.B. Biberian, G.A. Somorjai: J. Catal. 57, 426 (1979)

    Google Scholar 

  8. T. Matsushima, D.B. Almy, J.M. White: Surf. Sci. 67, 89 (1977)

    Google Scholar 

  9. P.R. Norton, R.L. Tapping, J.W. Goodale: J. Vac. Sci. Technol. A 14, 446 (1977)

    Google Scholar 

  10. B. Carriere, P. Legare, G. Maire: J. Chim. Phys. 71, 355 (1974)

    Google Scholar 

  11. W.H. Weinberg, D.R. Monroe, V. Lampton, R.P. Merrill: J. Vac. Sci. Technol. 14, 444 (1977)

    Google Scholar 

  12. H. Niehus, G. Comsa: Surf. Sci. 93, L147 (1980)

  13. A.L. Vishnevskii, V.I. Savchenko: React. Kinet. Catal. Lett. 38, 167 (1989)

    Google Scholar 

  14. H.H. Rotermund, W. Engel, S. Jakubith, A. v. Oertzen, G. Ertl: Ultramicroscopy 36, 164 (1991)

    Google Scholar 

  15. J. Lauterbach, G. Haas, H.H. Rotermund, G. Ertl: Surf. Sci. 294, 116 (1993)

    Google Scholar 

  16. R.H. Fowler: Phys. Rev. 38, 45 (1991)

    Google Scholar 

  17. H.H. Rotermund: Surf. Sci. 283, 87 (1993)

    Google Scholar 

  18. A. v. Oertzen: Dissertation, Freie Universität, Berlin (1993)

  19. P.R. Norton, K. Griffiths, P.E. Bindner: Surf. Sci. 138, 125 (1983)

    Google Scholar 

  20. W. Swiech, B. Rausenberger, W. Engel, A.M. Bradshaw, E. Zeitler: Surf. Sci. (1993), to be published

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotermund, H.H., Lauterbach, J. & Haas, G. The formation of subsurface oxygen on Pt(100). Appl. Phys. A 57, 507–511 (1993). https://doi.org/10.1007/BF00331749

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331749

PACS

Navigation