Skip to main content
Log in

Hollow cathode discharge (HCD) dark space diagnostics with laser photoionization and galvanic detection

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on a new technique for measuring the cathode dark space width and the variation of ground state atomic density within it by measuring the ionization current generated by laser photoionization of neutral ground state metallic atoms. The technique is supported by a theoretical model of charge displacement in the dark space based on the assumption of a Lorentzian gas and thus on Langevin equations. After verifying the applicability of the theoretical approach, measurements of dark space width with respect to pressure, current and nature of the buffer gas are presented for an uranium HCD. Results of variation in density of ground state neutral uranium, in the dark space, versus current and pressure in Xe are also given. These last results are of interest when using photoionization currents in the HCD dark space for laser spectroscopy, such as photoionization studies of elements like uranium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Den Hartog, T.R. O'Brian, J.E. Lawler: Phys. Rev. Lett. 62, 1500–1503 (1989)

    Google Scholar 

  2. N. Ami, A. Wada, Y. Adachi, C. Hirose: Appl. Spectrosc. 43, 245–248 (1989)

    Google Scholar 

  3. E.A. Den Hartog, D.A. Doughtly, J.E. Lawler: Phys. Rev. A 38, 2471–2481 (1988)

    Google Scholar 

  4. D.K. Doughtly, E.A. Den Hartog, J.E. Lawler: Appl. Phys. Lett. 46, 352–354 (1985)

    Google Scholar 

  5. D.K. Doughtly, J.E. Lawler: Appl. Phys. Lett. 45, 611–613 (1984)

    Google Scholar 

  6. J.E. Lawler: Phys. Rev. A 32, 2977–2980 (1985)

    Google Scholar 

  7. T.J. Sommerer, J.E. Lawler, W.N.G. Hitchon: J. Appl. Phys. 64, 1775–1780 (1988)

    Google Scholar 

  8. R.J. Carman: J. Phys. D: Appl. Phys. 22, 55–66 (1989)

    Google Scholar 

  9. S. Hashiguchi, M. Hasikuni: Jpn. J. Appl. Phys. 28, 699–708 (1989)

    Google Scholar 

  10. S. Hashiguchi, M. Hasikuni: Jpn. J. Appl. Phys. 27, 1010–1016 (1988)

    Google Scholar 

  11. S. Hashiguchi, M. Hasikuni: Jpn. J. Appl. Phys. 27, 2007–2008 (1988)

    Google Scholar 

  12. S. Hashiguchi, M. Hasikuni: Jpn. J. Appl. Phys. 26, 271–280 (1987)

    Google Scholar 

  13. E.M. Van Veldhuizen: The hollow cathode glow discharge analyzed by optogalvanic and other studies (Ph.D thesis, Technische Hogeschool Eindhoven 1983)

  14. B.E. Warner, K.B. Persson: J. Appl. Phys. 50, 5694–5703 (1979)

    Google Scholar 

  15. M.J. Kushner, B.E. Warner: J. Appl. Phys. 54, 2970–2982 (1983)

    Google Scholar 

  16. H. Koch, H.J. Eichler: J. Appl. Phys. 54, 4939–4946 (1983)

    Google Scholar 

  17. T.C. Paulick: J. Appl. Phys. 67, 2774–2788 (1990)

    Google Scholar 

  18. N.P. Ferreira, J.A. Strauss, H.G.C. Human: Spectrochim. Acta B 38, 899–911 (1983)

    Google Scholar 

  19. I. Abril, A. Gras-Marti, J.A. Valles-Abarca: J. Phys. D: Appl. Phys. 17, 1841–1849 (1984)

    Google Scholar 

  20. C. Drèze, Y. Demers, J.M. Gagné: J. Opt. Soc. Am. 72, 912–917 (1982)

    Google Scholar 

  21. K. Ernst, M. Inguscio: La rivista del Nuovo Cimento 11, 1–66 (1988)

    Google Scholar 

  22. V.N. Ochkin, N.G. Preobrazhensîi, N.N. Sobolev, N.Ya. Shaparev: Sov. Phys. Usp. 29, 260–280 (1986)

    Google Scholar 

  23. M. Broglia, F. Catoni, A. Montone, P. Zampetti: Phys. Rev. A 36, 705–714 (1987)

    Google Scholar 

  24. See for example H.H. Staub: Detection Methods,in Experimental Nuclear Physics, Vol. 1, ed. by E. Segré (Wiley, New York 1953) pp. 1–165

    Google Scholar 

  25. B.E. Cherrington: Gaseous electronics and gas lasers (Pergamon, New York 1979)

    Google Scholar 

  26. J.M. Gagné, B. Mongeau, B. Leblanc, J.P. Saint-Dizier, P. Pianarosa, L. Bertrand: Appl. Opt. 17, 2507–2510 (1978)

    Google Scholar 

  27. M. Broglia, F. Catoni, P. Zampetti: J. Phys. C7–44, 479–487 (1983)

    Google Scholar 

  28. S. Hashiguchi, M. Hasikuni: Jpn. J. Appl. Phys. 27, 2007–2008 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babin, F., Gagné, JM. Hollow cathode discharge (HCD) dark space diagnostics with laser photoionization and galvanic detection. Appl. Phys. B 54, 35–45 (1992). https://doi.org/10.1007/BF00331732

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331732

PACS

Navigation