Skip to main content
Log in

The nature of the C-defects in nickel and their rôle in the interpretation of radiation damage in metals

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In previous Perturbed-Angular-Correlation (PAC) studies of the γ-γ emission of 111In probe nuclei in cold-worked or particle-irradiated nickel, it has been found that thermal annealing in the temperature regime of recovery stage III leads to the formation of so-called C-defects (Cubic defects). This is indicated by the occurrence of a new frequency of about 80 Mrad/s, in addition to the frequency (≈200 Mrad/s) that is due to 111In on substitutional sites. Obviously, the C-defects are complexes consisting of 111In and the intrinsic point-defect species that migrates freely in recovery stage III. Therefore, they have played an important rôle in the long-standing controversy on whether the recovery-stage-III defects are vacancies (one-interstitial model) or self-interstitials (two-interstitial model). The present paper reports on a novel experimental effort to reveal the nature of the C-defects by combining PAC studies on nickel samples differently pretreated in a systematic way, investigations of the Extended X-ray Absorption Fine Structure (EXAFS) on In-doped nickel, and measurements of the decay rate of 111In nuclei in the Electron-Capture-Induced Decay (ECID). On the basis of the results of these experiments it is concluded that the defects trapped by substitutional 111In atoms (Ins) in recovery stage III are self-interstitials (I), as expected according to the two-interstitial model. Moreover, there is evidence that the C-defects are In interstitials on tetrahedral sites (Ini) that form exclusively in the vicinity of the specimen surface from Ins − I pairs via the reaction Ins+I → Ini.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Frauenfelder, R.M. Steffen: In Perturbed Angular Correlations, ed. by E. Karlsson (North-Holland, Amsterdam 1964) p. 3

    Google Scholar 

  2. H. Frauenfelder, R.M. Steffen: In Alpha-, Beta-, and Gamma- Ray Spectroscopy, ed. by K. Siegbahn, Vol. 2 (North-Holland, Amsterdam 1965) p. 997

    Google Scholar 

  3. E. Recknagel, G. Schatz, T. Wichert: In Hyperfine Interactions of Radioactive Nuclei, ed. by J. Christiansen, Topics Curr. Phys., Vol. 31 (Springer, Berlin, Heidelberg 1983) p. 133

    Google Scholar 

  4. G. Schatz, A. Weidinger: Nukleare Festkörperphysik (Teubner, Stuttgart 1985)

    Google Scholar 

  5. C. Hohenemser, A.R. Arends, H. de Waard, H.G. Devare, F. Pleiter, S.A. Drentje: Hyperfine Interact. 3, 297 (1977)

    Google Scholar 

  6. C. Allard, G.S. Collins, C. Hohenemser: Hyperfine Interact. 15/16, 387 (1983)

    Google Scholar 

  7. G.S. Collins, R.B. Schuhmann: Hyperfine Interact. 15/16, 391 (1983)

    Google Scholar 

  8. C. Allard, G.S. Collins, C. Hohenemser: Phys. Rev. B 32, 4839 (1985)

    Google Scholar 

  9. J.R. Fransens, F. Pleiter, J. Meinders: Solid State Commun. 71, 1155 (1989)

    Google Scholar 

  10. A. Seeger, H. Kronmüller: Mater. Sci. Forum 15–18, 65 (1987)

    Google Scholar 

  11. J. Voigt, X.L. Ding, R. Fink, G. Krausch, B. Luckscheiter, R. Platzer, V. Wöhrmann, R. Wesche, G. Schatz: In Nukleare Festkörperphysik, ed. by E. Recknagel, G. Schatz, Jahresbericht 1989 (Universität Konstanz, Konstanz 1989) p. 18

    Google Scholar 

  12. W. Frank, A. Seeger: Solid State Commun. 68, 495 (1988)

    Google Scholar 

  13. W. Schilling, P. Ehrhart, K. Sonnenberg: In Fundamental Aspects of Radiation Damage in Metals, ed. by M.T. Robinson, F.W. Young, Jr., Vol. 1, (USERDA, CONF-751006-P1, Gatlinburg, TN 1976) p. 470

    Google Scholar 

  14. A. Seeger: In Fundamental Aspects of Radiation Damage in Metals, ed. by M.T. Robinson, F.W. Young, Jr., Vol. 1, (USERDA, CONF-751006-P1, Gatlinburg, TN 1976) p. 493

  15. H.G. van Bueren: Z. Metallkde. 46, 272 (1955)

    Google Scholar 

  16. W. Bauer, J.W. DeFord, J.S. Koehler, J.W. Kauffman: Phys. Rev. 128, 1497 (1962)

    Google Scholar 

  17. A. Seeger: J. Phys. Soc. Jpn. 18, Suppl. III, 260 (1963)

    Google Scholar 

  18. W. Schilling, K. Sonnenberg, H.-J. Dibbert: Radiat. Effects 16, 57 (1972)

    Google Scholar 

  19. M. Nakagawa, K. Böning, P. Rosner, G. Vogl: Phys. Rev. B 16, 5285 (1977)

    Google Scholar 

  20. A. Seeger: J. Phys. F 3, 248 (1973)

    Google Scholar 

  21. A. Seeger: Cryst. Lattice Defects 4, 221 (1973)

    Google Scholar 

  22. B. Besold, E. Danielsen, H. Hofsäss, G. Lindner, J.W. Petersen, E. Recknagel, M. Sondergaard, G. Weyer, S. Winter: Mater. Sci. Forum 15–18, 665 (1987)

    Google Scholar 

  23. G. Lindner, H. Hofsäss, S. Winter, S.G. Jahn, U. Wahl, W. Pfeiffer, E. Recknagel: In Nukleare Festkörperphysik, ed. by E. Recknagel, G. Schatz, Jahresbericht 1987 (Universität Konstanz, Konstanz 1987) p. 34

    Google Scholar 

  24. G. Dlubek, R. Krause, O. Brümmer, Z. Michno, T. Gorecki: J. Phys. F 17, 1333 (1987)

    Google Scholar 

  25. D. Sayers, E.A. Stern, F. Lytle: Phys. Rev. Lett. 27, 1204 (1971)

    Google Scholar 

  26. E.A. Stern: Phys. Rev. B 10, 3027 (1974)

    Google Scholar 

  27. D. Sayers, E.A. Stern, F. Lytle: Phys. Rev. B 11, 4825 (1975); Phys. Rev. B 11, 4836 (1975)

    Google Scholar 

  28. J. Pendry: In EXAFS and Near Edge Structure, ed. by A. Bianconi, L. Incoccia, S. Stipcich, Springer Ser. Chem. Phys., Vol. 27 (Springer, Berlin, Heidelberg 1983) p. 4

    Google Scholar 

  29. E.A. Stern: In X-Ray Absorption Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, ed. by D. Koningsberger, R. Prins (Wiley, New York 1988) p. 3

    Google Scholar 

  30. B. Teo: EXAFS: Basic Principles and Data Analysis, Inorg. Chem. Concepts, Vol. 9 (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  31. P. Marmier, E. Sheldon: Physics of Nuclei and Particles, Vol. 1 (Academic, New York 1969)

    Google Scholar 

  32. J. Kraushaar, E. Wilson, K. Bainbridge: Phys. Rev. 90, 610 (1953)

    Google Scholar 

  33. B. Aspacher: EXAFS-, PAC-, Energieverschiebungs- und Lebensdauermessungen an indiumdoriertem Nickel. Dissertation, Universität Stuttgart, Stuttgart (1991)

    Google Scholar 

  34. B. Aspacher: Untersuchung atomarer Fehlstellen mit gestörter Winkelkorrelation in Metallen. Diploma Thesis, Universität Stuttgart, Stuttgart (1988)

    Google Scholar 

  35. G. Gutekunst: Gestörte Winkelkorrelation an Legierungen. Diploma Thesis, Universität Stuttgart, Stuttgart (1990)

    Google Scholar 

  36. M. Lederer, V. Shiley: Table of Isotopes (Wiley, New York 1978)

    Google Scholar 

  37. A. Krolzig, G. Materlik, M. Swars, J. Zegenhagen: Nucl. Instrum. Methods 219, 430 (1984)

    Google Scholar 

  38. B. Lengeler: Private communication

  39. D. Williamson: In Mössbauer Isomer Shifts, ed. by G. Shenoy, F. Wagner (North-Holland, Amsterdam 1978) p. 317

    Google Scholar 

  40. B. Aspacher, K. Maier: To be published

  41. K.-H. Robrock: Mater. Sci. Forum 15–18, 537 (1987)

    Google Scholar 

  42. L. Niesen: Hyperfine Interact. 79, 701 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aspacher, B., Frank, W., Kizler, P. et al. The nature of the C-defects in nickel and their rôle in the interpretation of radiation damage in metals. Appl. Phys. A 59, 339–348 (1994). https://doi.org/10.1007/BF00331710

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331710

PACS

Navigation