Skip to main content
Log in

Quantum wells for femtosecond optoelectronics applications

  • Nonlinear Optical Materials
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The ultrafast nonlinear optical properties of quantum well excitons have been studied extensively in recent years. Quantum well excitons, which are sharp and well-resolved at room temperature, are well suited to optoelectronics applications, having large electroabsorption response. In this review, we discuss experiments which use simultaneously the nonlinear optical response of the quantum well exciton and the electroabsorption response in order to characterize electrical signals in the femtosecond time scale. In addition, we discuss intrinsic speed limitations in excitonic optoelectronics and extensions to one- and two-dimensional spatiotemporal field mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Franz. Z. Naturf. (a) 13, 484 (1958)

    Google Scholar 

  2. L.V. Keldysh: Soviet Phys. JETP 34, 788 (1958)

    Google Scholar 

  3. J.D. Dow, D. Redfield: Phys. Rev. B 1, 3358 (1970)

    Google Scholar 

  4. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus: Phys. Rev. B 32, 1043 (1985)

    Google Scholar 

  5. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, C.A. Burrus: Phys. Rev. Lett. 53, 2173 (1984)

    Google Scholar 

  6. D.A.B. Miller: Opt. Quant. Electron. 2, S 61 (1990)

  7. S. Schmitt-Rink, D.S. Chemla, W.H. Knox, D.A.B. Miller: Opt. Lett. 15, 60 (1990)

    Google Scholar 

  8. W.H. Knox, D.A.B. Miller, T.C. Damen, D.S. Chemla, C.V. Shank, A.C. Gossard: Appl. Phys. Lett. 48, 864 (1986)

    Google Scholar 

  9. K.C. Gupta, R. Garg, I.J. Bahl: Microstrip Lines and Slotlines (Artech House, New York 1979); two important forms of electrooptic sampling are discussed: J.A. Valdmani, G.A. Mourou, C.W. Gabel: IEEE J. QE-19, 664 (1983) describes sampling using ferroelectric materials

    Google Scholar 

  10. K.J. Weingarten, M.J. Rodwell, D.M. Bloom: Springer Ser. Electronics Photonics, Vol. 24, 18 (Springer, Berlin, Heidelberg 1987) describes sampling using internal electrooptic effects in GaAs

    Google Scholar 

  11. J.A. Valdmanis: Electron. Lett. 23, 1308 (1987) describes sampling using an external lithium tantalate crystal

    Google Scholar 

  12. Y. Silberberg, P.W. Smith, D.A.B. Miller, B. Tell, A.C. Gossard, W. Wegmann: Picosecond Electronics and Optoelectronics, Springer Ser. Electrophys. Vol. 21 (Springer, Berlin, Heidelberg 1985) p. 159

    Google Scholar 

  13. W.H. Knox, J.E. Henry, K.W. Goossen, K.D. Li, B. Tell, D.A.B. Miller, D.S. Chemla, A.C. Gossard, J. English, S. Schmitt-Rink: IEEE J. QE-25, 2586 (1989)

    Google Scholar 

  14. H.K. Henisch: Semiconductor Contacts (Oxford Science Publications, Oxford 1985); and the original reference to metalsemiconductor contacts in the semi-insulating limit: N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crytals (Oxford University Press, Oxford 1940)

    Google Scholar 

  15. M. Ramaswamy: Excitonic Electroabsorption Mapping Spectroscopy in GaAs Quantum Well Modulators, Masters Thesis MIT (1990)

  16. M. Ramaswamy, W.H. Knox, T. Sizer, B. Tell, G.E. Doran: International Quantum Electronics Conference (1990), paper QTuH24

  17. M. Ramaswamy, W.H. Knox: Optical Society Annual Meeting (1990), paper MQ3 (to be published)

  18. W.H. Knox, R.L. Fork, M.C. Downer, D.A.B. Miller, D.S. Chemla, C.V. Shank, A.C. Gossard, W. Wegmann: Phys. Rev. Lett. 54, 1306 (1986)

    Google Scholar 

  19. W.H. Knox, C. Hirlimann, D.A.B. Miller, J. Shah, D.S. Chemla, C.V. Shank: Phys. Rev. Lett. 56, 1191 (1986)

    Google Scholar 

  20. A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W.T. Masselink, H. Morkoc: Phys. Rev. Lett. 56, 2748 (1986)

    Google Scholar 

  21. A. Von Lehmen, D.S. Chemla, J.E. Zucker, J.P. Heritage: Opt. Lett. 11, 609 (1986)

    Google Scholar 

  22. W.H. Knox, J.B. Stark, D.S. Chemla, D.A.B. Miller, S. Schmitt-Rink: Phys. Rev. Lett. 62, 1189 (1988)

    Google Scholar 

  23. S. Schmitt-Rink, D.S. Chemla, D.A.B. Miller: Adv. Phys. 38, 89 (1989)

    Google Scholar 

  24. W.H. Knox, F.A. Beisser: Springer Ser. Chemical Phys. Vol. 53, Proc. Ultrafast Phenomena VII (Springer, Berlin, Heidelberg 1990) p. 20

    Google Scholar 

  25. G. Hasnain, G. Arjavalingham, A. Dienes, J.R. Whinnery: SPIE Proc. 439, 159 (1983)

    Google Scholar 

  26. G. Hasnain, A. Dienes, J.R. Whinnery: IEEE Trans. MTT-34, 738 (1986)

    Google Scholar 

  27. G. Hasnain, K.W. Goossen, W.H. Knox: Appl. Phys. Lett. 56, 515 (1990)

    Google Scholar 

  28. The Physics of Submicron Semiconductor Devices, ed. by H.L. Grubin, D.K. Ferry, C. Jacoboni (Plenum, New York 1988) Proc. NATO Conference on Physics of Submicron Devices

    Google Scholar 

  29. K.E. Meyer, M. Pessot, G. Mourou, R. Grondin, S. Chamoun: Appl. Phys. Lett. 53, 2254 (1988)

    Google Scholar 

  30. A.E. Iverson, G.M. Wysin, D.L. Smith, A. Redondo: Appl. Phys. Lett. 52, 2148 (1988)

    Google Scholar 

  31. S.M. Goodnick, Oregon State University, Corvallis, OR: Private communication, and to be published

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knox, W.H. Quantum wells for femtosecond optoelectronics applications. Appl. Phys. A 53, 503–513 (1991). https://doi.org/10.1007/BF00331539

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331539

PACS

Navigation