Skip to main content
Log in

Symbiotic mutants of USDA191, a fast-growing Rhizobium that nodulates soybeans

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Symbiotic and auxotrophic mutants of Rhizobium japonicum strain USDA191 were isolated using Tn5 mutagenesis and techniques that cause plasmid deletions and plasmid curing. Characterization of several mutants that are unable to nodulate (Nod-) or unable to fix nitrogen (Fix_) showed that nod and nif genes are located within one regions of a 200 MD plasmid (pSym191). Blot hybridization analysis of plasmids in other fast-growing R. japonicum strains showed that nod as well as nif sequences are located on plasmids in eight strains but are apparently carried in the chromosome in two strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams TH, McClung CR, Chelm BK (1984) Physical organization of the Bradyhizobium japonicum nitrogenase gene region. J Bacteriol 159:857–862

    Google Scholar 

  • Appelbaum E, Kramer R (1980) Restriction mapping of deletions in the nif region of the Klebsiella pneumoniae chromosome. Mol Gen Genet 179:349–354

    Google Scholar 

  • Appelbaum E, Johansen E, Chartrain N (1984) Identification of plasmids carrying symbiotic genes in fast-growing R. japonicum using DNA hybridization and Tn5 mutagenesis. In: Veeger C, Newton WE (eds) Advances in nitrogen fixation research. Martinus Nijhoff, The Hague, p. 670

    Google Scholar 

  • Appelbaum E, McLoughlin T, O'Connell M. Chartrain N (1985) Expression of symbiotic genes of Rhizobium japonicum USDA 191 in other rhizobia. J Bacteriol 163:385–388

    Google Scholar 

  • Beringer JE, Beynon JL, Buchanan-Wollaston AV, Johnston AWB (1978) Transfer of the drug-resistance transposon Tn5 to Rhizobium. Nature 276:633–634

    Google Scholar 

  • Bishop PE, Guevara JG, Engelke JA, Evans HJ (1976) Relation between glutamine synthetase and nitrogenase activities in the symbiotic association between Rhizobium japonicum and Glycine max. Plant Physiol 57:542–546

    Google Scholar 

  • Boyer HB, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    Google Scholar 

  • Brewen NJ, Beringer JB, Johnston AWB (1980) Plasmid-mediated transfer of host-range specificity between two strains of Rhizobium leguminosarum. J Gen Microbiol 120:413–420

    Google Scholar 

  • Broughton WJ, Heycke N, Meyer H, Pankhurst CE (1984) Plasmid-linked nif and “nod” genes in fast-growing rhizobia that nodulate Glycine max, Psophocarpus tetragonolobus, and Vigna unguiculata. Proc Natl Acad Sci USA 81:3093–3097

    Google Scholar 

  • Burkardt B, Burkardt H-J (1984) Visualization and exact molecular weight determination of a Rhizobium meliloti megaplasmid. J Mol Biol 175:213–218

    Google Scholar 

  • Chua KY, Pankhurst CE, MacDonald PE, Hupcroft DH, Jarvis BDW, Scott DB (1985) Isolation and characterization of transposon Tn5-induced symbiotic mutants of Rhizobium loti. J Bacteriol 162:335–343

    Google Scholar 

  • Cutting JA, Schulman HM (1969) The site of heme synthesis in root nodules. Biochim Biophys Acta 192:486–493

    Google Scholar 

  • Denarie J, Boistard P, Casse-Delbart F, Atherly AG, Berry JO, Russel P (1981) Indigenous plasmids of Rhizobium. In: Giles KG, Atherly AG (eds) Biology of the Rhizobiaceae. Academic Press, New York, pp 225–264

    Google Scholar 

  • Downie JA, Ma Q-S, Knight CD, Hombrecher G, Johnston AWB (1983) Cloning of the symbiotic region of Rhizobium leguminosarum: The nodulation genes are between the nitrogenase genes and a nifA-like gene. EMBO J 2:947–952

    Google Scholar 

  • Eckhardt T (1978) A rapid method for the identification of plasmid deoxyribonucleic acid in bacteria. Plasmid 1:584–588

    Google Scholar 

  • Egelhoff TT, Fisher RF, Jacobs TW, Mulligan JT, Long SR (1985) Nucleotide sequence of Rhizobium meliloti 1021 nodulation genes: nodD is read divergently from nodABC. DNA 4:241–248

    Google Scholar 

  • Fuhrmann M, Fischer H-M, Hennecke H (1985) Mapping of Rhizobium japonicum nifB-, fixBC-, and fixA-like genes and identification of the fixA promoter. Mol Gen Genet 199:315–322

    Google Scholar 

  • Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene-ethylene assay for N2 fixation: Laboratory and field evaluation. Plant Physiol 43:1185–1207

    Google Scholar 

  • Hattori J, Johnson DA (1984) Fast-growing Rhizobium japonicum that effectively nodulates several commercial Glycine max L. Merrill cultivars. Appl Environ Microbiol 48:234–235

    Google Scholar 

  • Heron DS, Pueppke SG (1984) Mode of infection,nodulation specificity, and indigenous plasmids of 11 fast-growing Rhizobium japonicum strains. J Bacteriol 160:1061–1066

    Google Scholar 

  • Hirsch PR (1978) Ph. D. Thesis. University of East Anglia

  • Holliday R (1956) A new method for the identification of biochemical mutants of microorganisms. Nature 178:987

    Google Scholar 

  • Hontelez JGJ, Mol P, van Dun C, Schetgens R, van Kammen A, van den Bos RC (1984) Expression of sym-plasmid genes in bacteroids of Rhizobium leguminosarum. In: Veeger C, Newton WE (eds) Advanced in nitrogen fixation research. Nijhoff/Junk Publishers, The Hague p 686

    Google Scholar 

  • Jorgensen RA, Rothstein SJ, Reznikoff WS (1979) A restriction enzyme cleavage map of Tn5 and location of a region encoding neomycin resistance. Mol Gen Genet 177:65–72

    Google Scholar 

  • Keyser HH, Bohlool BB, Hu TS, Weber DF (1982) Fast-growing rhizobia isolated from root nodules of soybean. Science 215:1631–1632

    Google Scholar 

  • Long SR, Buikema WJ, Ausubel FM (1982) Cloning of Rhizobium meliloti nodulation genes by direct complementation of Nodmutants. Nature 298:485–488

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Masterson RV, Russell PR, Atherly AG (1982) Nitrogen fixation (nif) genes and large plasmids of Rhizobium japonicum. J Bacteriol 152:928–931

    Google Scholar 

  • Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Morrison NA, Hau CY, Trinick MJ, Shine J, Rolfe BG (1983) Heat curing of a sym plasmid in a fast-growing Rhizobium sp. that is able to nodulate legumes and the nonlegume Parasponia sp. J Bacteriol 153:527–53

    Google Scholar 

  • Norel F, Kush A, Denefle P, Charpin N, Elmerich C (1984) Nitrogen fixation in a tropical Rhizobium associated with Sesbania rostrata In: Veeger C, Newton WE (eds) Advances in nitrogen fixation research. Nijhoff/Junk Publishers, The Hague, p 694

    Google Scholar 

  • Prakash RK, Atherly AG (1984) Reiteration of genes involved in symbiotic nitrogen fixation by fast-growing Rhizobium japonicum. J Bacteriol 160:785–787

    Google Scholar 

  • Riedel GE, Ausubel FM, Cannon FC (1979) Physical map of chromosomal nitrogen fixation (nif) genes of Klebsiella pneumoniae. Proc Natl Acad Sci USA 76:2866–2870

    Google Scholar 

  • Rosenberg C, Casse-Delbart F, Dusha I, David M, Boucher C (1982) Megaplasmids in the plant-associated bacteria Rhizobium meliloti and Pseudomonas solanacearum. J Bacteriol 150:402–406

    Google Scholar 

  • Rostas K, Sista P, Stanley J, Verma DP (1984) Transposon mutagenesis of Rhizobium japonicum. Mol Gen Genet 197:230–235

    Google Scholar 

  • Rossen L, Ma Q-S, Mudd EA, Johnston AWB, Downie JA (1984) Identification and DNA sequence of fixZ, a nifB-like gene from Rhizobium leguminosarum. Nucl Acids Res 12:7123–7134

    Google Scholar 

  • Ruvkun GB, Ausubel FM (1980) Interspecies homology of nitrogenase genes. Proc Natl Acad Sci USA 77:191–195

    Google Scholar 

  • Sadowsky MJ, Bohlool BB (1983) Possible involvement of a megaplasmid in nodulation of soybeans by fast-growing rhizobia from China. Appl Environ Microbiol 46:906–911

    Google Scholar 

  • Scott KF, Rolfe BG, Shine J (1981) Biological nitrogen fixation: primary structure of the Klebsiella pneumoniae nifH and nifD genes. J Mol Appl Genet 1:71–81

    Google Scholar 

  • Scott DB, Court CB, Ronson CW, Scott KF, Watson JM, Schofield PR, Shine J (1984) Organization of nodulation and nitrogen fixation genes on a Rhizobium trifolii symbiotic plasmid. Arch Microbiol 139:151–157

    Google Scholar 

  • Simon R (1984) High frequency mobilization of gram-negative bacterial replicons by the in vitro constructed Tn5-mob transposon. Mol Gen Genet 196:413–420

    Google Scholar 

  • Simon R, Priefer U, Pühler A (1983) A broad range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology 1:784–791

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Szeto WW, Zimmerman JL, Sundaresan V, Ausubel FM (1984) A Rhizobium meliloti symbiotic regulatory gene. Cell 36:1035–1043

    Google Scholar 

  • Veeger C, Newton WE (1984) Advances in nitrogen fixation research. Martinus Nijhoff, The Hague

    Google Scholar 

  • Vincent JM (1970) A manual for the practical study of root-nodule bacterial. Blackwell Scientific Publications. Oxford

    Google Scholar 

  • Yelton MM, Yang SS, Eadie SA, Lim ST (1983) Characterization of an effective salt-tolerant, fast-growing strain of Rhizobium japonicum. J Gen Microbiol 129:1537–1547

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Schell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Appelbaum, E.R., Johansen, E. & Chartrain, N. Symbiotic mutants of USDA191, a fast-growing Rhizobium that nodulates soybeans. Molec Gen Genet 201, 454–461 (1985). https://doi.org/10.1007/BF00331339

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331339

Keywords

Navigation