Skip to main content
Log in

The penetration of sodium into the brain following a cisternal injection of sodium chloride with particular emphasis on the area postrema

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Following an intracisternal injection of sodium chloride, sodium has been localized in paraventricular and subpial tissues of the posterior fossa by means of the pyroantimonate histochemical technique, with the use of a buffered pyroantimonate medium. The electron dense deposit is present in these tissues within 4 minutes after injection and is found only extracellularly except in the area postrema. This finding supports the contention that sodium is chiefly an extracellular ion and that the cerebrospinal fluid and the extracellular fluid are in equilibrium at these sites. In the area postrema, an intracellular precipitate is noted in the vesicular structures of the “atypical astrocytes” of this structure and in pinocytic vesicles of the large blood vessels. The intraglial localization of sodium in the area postrema is discussed in relation to a possible function of this structure as a regulator of cerebrospinal fluid ionic content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres, K. H.: Der Feinbau des Subfornikalorgans vom Hund. Z. Zellforsch. 68, 445–473 (1965).

    Google Scholar 

  • Brightman, M. W.: The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. II. Parenchymal distribution. Amer. J. Anat. 117, 193–220 (1965).

    Google Scholar 

  • Bulger, R. E.: Use of potassium pyroantimonate in the localization of sodium ions in rat kidney tissue. J. Cell Biol. 40, 79–94 (1969).

    Google Scholar 

  • Cohen, M. W., Gerschenfeld, H. M., Kuffler, S. W.: Ionic environment of neurones and glial cells in the brain of an amphibian. J. Physiol. (Lond.) 197, 363–372 (1968).

    Google Scholar 

  • Hartman, J. F.: High sodium content of cortical astrocytes. Arch. Neurol. 15, 633–642 (1966).

    Google Scholar 

  • Hild, W., Tasaki, I.: Morphological and physiological properties of neurones and glial cells in tissue culture. J. Neurophysiol. 25, 277–304 (1962).

    Google Scholar 

  • Katzman, R.: Electrolyte distribution in mammalian central nervous system. Are glia high sodium cells ? Neurology (Minneap.) 11, 27–36 (1961).

    Google Scholar 

  • Koella, N. P., Sutin, J.: Extra bloodbrain barrier structures. Int. Rev. Neurobiol. 10, 31–55 (1967).

    Google Scholar 

  • Kroidl, R.: Die arterielle und venöse Versorgung der Area postrema der Ratte. Z. Zellforsch. 89, 430–452 (1968).

    Google Scholar 

  • Lampert, S., Carpenter, 8.: Electron microscopic studies on the vascular permeability and the mechanism of demyelination in experimental allergic encephalomyelitis. J. Neuropath. exp. Neurol. 24, 11–24 (1965).

    Google Scholar 

  • Lane, B. P., Martin, E.: Electron probe analysis of cationic species in pyroantimonate precipitates in epon-embedded tissue. J. Histochem. Cytochem. 17, 102–106 (1969).

    Google Scholar 

  • Luse, S. A., Harris, B.: Electron microscopy of the brain in experimental edema. J. Neurosurg. 17, 439–446 (1960).

    Google Scholar 

  • —: Brain ultrastructure in hydration and dehydration. Arch. Neurol. (Paris od. Chic.) 4, 139–152 (1961).

    Google Scholar 

  • Palade, G. E.: Transport in quanta across the endothelium of blood capillaries (Abstract). Anat. Rec. 13, 254 (1960).

    Google Scholar 

  • Pappenheimer, J. R., Heisey, S. R., Jordan, E. F., Downer, J. DeC.: Perfusion of the cerebral ventricular system in unanesthetized goats. Amer. J. Physiol. 203, 763–774 (1962).

    Google Scholar 

  • Reese, T. S., Karnovsky, M. J.: Fine structural localization of a bloodbrain barrier to exogenous peroxidase. J. Cell Biol. 34, 207–217 (1967).

    Google Scholar 

  • Shimizu, N., Ishii, S.: Fine structure of the area postrema of the rabbit brain. Z. Zellforsch. 64, 462–473 (1964).

    Google Scholar 

  • Siegesmund, K. A.: Sodium localization in the cerebellum. J. Anat. (Lond.) 105, 403–413 (1969).

    Google Scholar 

  • Torack, R. M.: Sodium demonstration in rat cerebrum following perfusion with hydroxyadi-paldehyde-antimonate. Acta neuropath. (Berl.) 12, 173–182 (1969).

    Google Scholar 

  • —, LaValle, M. C.: The specificity of the pyroantimonate technique to demonstrate sodium. J. Histochem. Cytochem. 18, 635–643 (1970).

    Google Scholar 

  • —, Terry, R. D., Zimmerman, H. M.: The fine ultrastructure of cerebral fluid accumulation. Amer. J. Path. 36, 273–288 (1960).

    Google Scholar 

  • Van Harreveld, A., Collewijn, H., Malhotra, S. K.: Water, electrolytes and extracellular space in hydrated and dehydrated brains. Amer. J. Physiol. 10, 251–256 (1966).

    Google Scholar 

  • Wollard, H. H.: Vital staining of the leptomeninges. J. Anat. (Lond.) 58, 89–100 (1924).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grant number NB-08549-02 from the National Institute of Neurological Disease and Stroke, Bethesda, Maryland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torack, R.M. The penetration of sodium into the brain following a cisternal injection of sodium chloride with particular emphasis on the area postrema. Z. Zellforsch. 113, 1–12 (1971). https://doi.org/10.1007/BF00331197

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331197

Key-Words

Navigation