Skip to main content
Log in

Transformation of yeast and Podospora: innocuity of senescence-specific DNAs

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Two senscence-specific DNAs (sen-DNAs α and β) were tested for their ability to drive autonomous replication in yeast and Podospora. The β but not the α sequence has autoreplicative (ARS) properties in yeast; the ARS sequences of β are not included in the region common to all the β sen-DNAs. Neither the α nor the β sequences can confer autoreplicative properties in Podospora. These sequences inserted into a hybrid vector carrying the suppressor tRNA, su4-1, do not change the mode of transformation of a suppressible leu-1-1 strain of Podospora: the transformation is by integration whether or not the plasmid carries a sen-DNA sequence. The su4-1 gene integrates at its homologous site in a minority of cases. It is possible to reisolate free plasmids at a low frequency from some transformants. The presence of a sen-DNA on the transforming vector has no effect upon the longevity of the transformants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bach ML, Lacroute F, Botstein D (1979) Evidence for transcriptional regulation of orotidine-5′-phosphate decarboxylase in yeast by hybridization of mRNA to the yeast structural gene cloned in E. coli. Proc Natl Acad Sci USA 76:386–390

    Google Scholar 

  • Ballance DJ, Turner G (1985) Development of a high-frequency transforming vector for Aspergillus nidulans. Gene 36:321–331

    Google Scholar 

  • Bégueret J, Razanamparany V, Perrot M, Barreau C (1984) Cloning gene ura5 for the orotidylic acid pyrophosphorylase of the filamentous fungus Podospora anserina: transformation of protoplasts. Gene 32: 487–492

    Google Scholar 

  • Belcour L, Begel O (1977) Mitochondrial genes in Podospora anserina: Recombination and linkage. Mol Gen Genet 153:11–21

    Google Scholar 

  • Belcour L, Begel O (1978) Lethal mitochondrial genotypes in Podospora anserina: A model for senescence. Mol Gen Genet 163:113–123

    Google Scholar 

  • Belcour L, Begel O, Mossé MO, Vierny C (1981) Mitochondrial DNA amplification in senescent cultures of Podospora anserina: Variability between the retained, amplified sequences. Curr Genet 3:13–21

    Google Scholar 

  • Belcour L, Vierny C (1986) Variable DNA-splicing sites of a mitochondrial intron: Relationship to the sencscence process in Podospora. EMBO J 5:609–614

    Google Scholar 

  • Blanc H (1984) Two modules from the hypersuppressive rho- mitochondrial DNA are required for plasmid replication in yeast. Gene 30:47–61

    Google Scholar 

  • Boy-Marcotte E, Jacquet M (1982) A Dictyostelium discoideum DNA fragment complements a Saccharomyces cerevisiae ura3 mutant. Gene 20:433–440

    Google Scholar 

  • Broach JR, Li Y, Feldman J, Jayraram M, Abraham J, Nasmyth K, Hicks J (1983) Localization and sequence analysis of yeast origins of DNA replication. Cold Spring Harbor Symp Quant Biol 47:1165–1173

    Google Scholar 

  • Brygoo Y, Debuchy R (1985) Transformation by integration in Podospora anserina. I. Methodology and phenomenology. Mol Gen Genet 200:128–131

    Google Scholar 

  • Buxton FP, Radford A (1984) The transformation of mycelial spheroplasts of Neurospora crassa and the attempted isolation of an autonomous replicator. Mol Gen Genet 196:339–344

    Google Scholar 

  • Case ME (1982) Transformation of Neurospora crassa utilizing recombinant plasmid DNA. In: Hollander A, de Moss R, Kaplan S, Konisky J, Savage D, Wolf RS (eds) Genetic engineering of microorganisms for chemicals. Plenum Press, New York, pp 87

    Google Scholar 

  • Celninker SE, Sweder K, Srienc F, Bailey JE, Campbell JL (1984) Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol Cell Biol 4:2455–2466

    Google Scholar 

  • Cummings DJ, Belcour L, Grandchamp C (1979a) Mitochondrial DNA from Podospora anserina. I. Isolation and characterization. Mol Gen Genet 171:229–238

    Google Scholar 

  • Cummings DJ, Belcour L, Grandchamp C (1979b) Mitochondrial DNA from Podospora anserina. II. Properties of mutant DNA and multimeric circular DNA from senescent cultures. Mol Gen Genet 171:239–250

    Google Scholar 

  • Cummins CM, Culbertson MR (1981) Molecular cloning of the SUF2 frameshift suppressor gene from Saccharomyces cerevisiae. Gene 14:263–278

    Google Scholar 

  • Debuchy R, Brygoo Y (1985) Cloning of opal suppressor tRNA genes of a filamentous fungus reveals two tRNASer genes with unexpected structural differences. EMBO J 4:3553–3556

    Google Scholar 

  • Dhawale SS, Marzluf GA (1985) Transformation of Neurospora crassa with circular and linear DNA and analysis of the fate of the transforming DNA. Curr Genet 100:205–212

    Google Scholar 

  • Esser K (1974) Podospora anserina In: King RC (ed) Handbook of genetics vol 1. Plenum Press, New York, pp 531–551

    Google Scholar 

  • Gerbaud C, Fournier P, Blanc H, Aigle M, Heslot H, Guerineau M (1979) High frequency of yeast transformation by plasmids carrying part or entire 2 μm yeast plasmid. Gene 5:233–253

    Google Scholar 

  • Grant DM, Lambowitz AM, Rambosek JA, Kinsey JA (1984) Transformation of Neurospora crassa with recombinant plasmids containing the cloned glutamate dehydrogenase (am) gene: evidence for autonomous replication of the transforming plasmid. Mol Cell Biol 4:2041–2051

    Google Scholar 

  • Hinnen A, Hicks JB, Fink GR (1978) Transformation of yeast. Proc Natl Acad Sci USA 75:1929–1933

    Google Scholar 

  • Hottinger H, Pearson D, Yamao F, Gamulin V, Cooley L, Cooper T, Söll D (1982) Nonsense suppression in Schizosaccharomyces pombe: The S. pombe Sup3-e tRNASer gene is active in S. cerevisiae. Mol Gen Genet 188:219–224

    Google Scholar 

  • Hottinger H, Stadelman B, Pearson D, Frendewey D, Kohli J, Söll D (1984) The Schizosaccharomyces pombe sup3-i suppressor recognizes ochre, but not amber codons in vitro and in vivo. EMBO J 3:423–428

    Google Scholar 

  • Hsiao CL, Carbon J (1979) High-frequency transformation of yeast by plasmids containing the cloned yeast ARG4 gene. Proc Natl Acad Sci USA 76:3829–3833

    Google Scholar 

  • Jamet-Vierny C, Begel O, Belcour L (1980) Senescence in Podospora anserina: Amplification of a mitochondrial DNA sequence. Cell 21:189–194

    Google Scholar 

  • Johnstone IL, Hughes SG, Clutterbuck AJ (1985) Cloning an Aspergillus nidulans developmental gene by transformation. EMBO J 4:1307–1311

    Google Scholar 

  • Kearsey S (1984) Structural requirements for the function of a yeast chromosomal replicator. Cell 37:299–307

    Google Scholar 

  • Koll F, Begel O, Keller AM, Vierny C, Belcour L (1984) Ethidium bromide rejuvenation of senescent cultures of Podospora anserina: Loss of senescence specific DNA and recovery of normal mitochondrial DNA. Curr Genet 8:127–134

    Google Scholar 

  • Koll F, Belcour L, Vierny C (1985) A 1,100-bp sequence of mitochondrial DNA is involved in senescence process in Podospora: Study of senescent and mutant cultures. Plasmid 14:106–117

    Google Scholar 

  • Lazdins IB, Cummings DJ (1982) Autonomously replicating sequences in young and senescent mitochondrial DNA from Prodospora anserina. Curr Genet 6:173–178

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor laboratory Press, NY

    Google Scholar 

  • Marcou D (1961) Notion de longévité et nature cytoplasmique du determinant de la sénescence chez quelques champignons. Ann Sci Natur Botan 11:653–764

    Google Scholar 

  • Maundrell K, Wright APH, Piper M, Shall S (1985) Evaluation of heterologous ARS activity in S. cerevisiae using cloned DNA from S. pombe. Nucleic Acids Res 13:3711–3722

    Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Yeast transformation: A model system for the study of recombination. Proc Natl Acad Sci USA 78:6354–6358

    Google Scholar 

  • Osiewacz HD, Esser K (1984) The mitochondrial plasmid of Podospora anserina: A mobile intron of a mitochondrial gene. Curr Genet 8:299–305

    Google Scholar 

  • Paietta J, Marzluf GA (1985a) Plasmid recovery from transformants and the isolation of chromosomal DNA segments improving plasmid replication in Neurospora crassa. Curr Genet 9:383–388

    Google Scholar 

  • Paietta J, Marzluf GA (1985b) Gene disruption by transformation in Neurospora crassa. Mol Cell Biol 5:1554–1559

    Google Scholar 

  • Picard M (1971) Genetic evidence for a polycistronic unit of transcription in the complex locus “14” in Podospora anserina. Mol Gen Genet 111:35–50

    Google Scholar 

  • Rochaix JD, van Dillewijn J, Rahire M (1984) Construction and characterization of autonomously replicating plasmids in the green unicellar alga Chlamydomonas reinhardii. Cell 36:925–931

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Srienc F, Bailey JE, Campbell JL (1985) Effect of ARS1 mutations on chromosome stability in Saccharomyces cerevisiae. Mol Cell Biol 5:1676–1684

    Google Scholar 

  • Stahl V, Lemke PA, Tudzynski P, Kück U, Esser K (1978) Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet 162:341–343

    Google Scholar 

  • Stahl V, Tudzynski P, Kück U, Esser K (1982) Replication and expression of a bacterial mitochondrial hybrid plasmid in the fungus Podospora anserina. Proc Natl Acad Sci USA 79:3641–3645

    Google Scholar 

  • Stinchcomb DT, Struhl K, Davis RW (1979) Isolation and characterization of a yeast chromosomal replicator. Nature 282:39–43

    Google Scholar 

  • Stinchcomb DT, Tomas M, Kelly J, Selker E, Davis RW (1980) Eukaryotic DNA segments capable of autonomous replication in yeast. Proc Natl Acad Sci USA 77:4559–4563

    Google Scholar 

  • Stohl LL, Lambowitz AM (1983) Construction of a shuttle vector for the filamentous fungus Neurospora crassa. Proc Natl Acad Sci USA 80:1058–1062

    Google Scholar 

  • Struhl K, Stinchcomb DI, Scherer S, Davis RW (1979) High frequency transformation of yeast: Autonomous replications of hybrid DNA molecules. Proc Natl Acad Sci USA 76:1035–1039

    Google Scholar 

  • Thomas DY, James AP (1980) Genetic analysis of Saccharomyces cerevisiae transformed by a plasmid containing a suppressor transfer ribonucleic acid gene. J Bacteriol 143:1179–1186

    Google Scholar 

  • Tilburn J, Scazzochio C, Taylor GG, Zabicky-Zissmann JH, Lockington RA, Davies RW (1983) Transformation by integration in Aspergillius nidulans. Gene 26:205–221

    Google Scholar 

  • Vallet JM, Rochaix JD (1985) Chloroplast origins of DNA replication are distinct from chloroplast ARS sequences in two green algae. Curr Genet 9:321–324

    Google Scholar 

  • Vierny C, Keller AM, Begel O, Belcour L (1982) A sequence of mitochondrial DNA is associated with the onset of senescence in a fungus. Nature 297:157–159

    Google Scholar 

  • Wallace RB, Johnson PF, Tanaka S, Schöld M, Itakura K, Abelson J (1980) Directed deletion of a yeast transfer RNA intervening sequence. Science 209:1396–1400

    Google Scholar 

  • Wernars K, Goosen T, Wennekes LMJ, Visser J, Bos CJ, van den Broek HWJ, van Gorcom RFM, van den Hondel CA, Pouwels PH (1985) Gene amplification in Aspergillus nidulans by transformation with vectors containing the amdS gene. Curr Genet 9:361–368

    Google Scholar 

  • Williamson DH (1985) The yeast ARS element, six years on: a progress report. Yeast 1:1–14

    Google Scholar 

  • Willis I, Hottinger H, Pearson D, Chisholm V, Leupold U, Söll D (1984) Mutations affecting excision of the intron from a eukaryotic dimeric tRNA precursor. EMBO J 3:1573–1580

    Google Scholar 

  • Wright RM, Horrum MA, Cummings DJ (1982) Are mitochondrial structural genes selectively amplified during senescence in Podospora anserina. Cell 29:505–515

    Google Scholar 

  • Zakian VA, Kupfer DM (1982) Replication and segregation of an unstable plasmid in yeast. Plasmid 8:15–28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Gajewski

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sainsard-Chanet, A., Begel, O. Transformation of yeast and Podospora: innocuity of senescence-specific DNAs. Molec Gen Genet 204, 443–451 (1986). https://doi.org/10.1007/BF00331022

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00331022

Key words

Navigation