Skip to main content
Log in

The recognition of mismatched base pairs in DNA by DNase I from Ustilago maydis

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The activity of Ustilago maydis DNAse I, an enzyme implicated in genetic recombination, on DNA substrates containing unpaired or mismatched bases, was examined. The enzyme nicked supercoiled PM-2 molecules, converting these to relaxed circular and linear molecules. Discrete double stranded linear fragments smaller than unit length were also observed after digestion at high enzyme concentration. Heteroduplex molecules were constructed using ϕ80 bacteriophage derivatives which contained single base substitutions within the E. coli tRNA tyr1 gene. Single and double stranded nicking at or near the single mismatched site was observed with three out of the five pairs of heteroduplexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, A., Holloman, W.K., Holliday, R.: Nuclease that preferentially inactivates DNA containing mismatched bases. Nature (Lond.) 258, 54–56 (1975)

    Google Scholar 

  • Badman, R.: DNase-deficient mutants of Ustilago maydis with altered recombination frequences. Genet. Res. 20, 213–229 (1972)

    Google Scholar 

  • Beard, P., Morrow, J., Berg, P.: Cleavage of circular, superhelical simian virus 40 DNA to a linear duplex by S1 nuclease. J. Virol. 12, 1303–1313 (1973)

    Google Scholar 

  • Brack, C., Bickle, T.A., Yuan, R.: The relation of single-stranded regions in bacteriophage PM-2 supercoiled DNA to the early melting sequences. J. molec. Biol. 96, 693–702 (1975)

    Google Scholar 

  • Fogel, S., Mortimer, R. K.: Informational transfer in meiotic gene conversion. Proc. nat. Acad. Sci. (Wash.) 62, 96–103 (1969)

    Google Scholar 

  • Germond, J.E., Vogt, V.M., Hirt, B.: Characterization of the single-strand-specific nuclease S1 activity on double-stranded supercoiled polyoma DNA. Europ. J. Biochem. 43, 591–600 (1974)

    Google Scholar 

  • Godson, G.N.: Action of the single-stranded DNA specific nuclease S1 on double-stranded DNA. Biochim. biophys. Acta (Amst.) 308, 59–67 (1973)

    Google Scholar 

  • Goodman, H.M., Olson, M.V., Hall, B.D.: Nucleotide sequence of a mutant eukaryotic gene: the yeast tyrosine-inserting ochre suppressor SUP4-o. Proc. nat. Acad. Sci. (Wash.) 74, 5453–5457 (1977)

    Google Scholar 

  • Gray, H.B., Jr., Upholt, W.B., Vinograd, J.: A buoyant method for the determination of the superhelix density of closed circular DNA. J. molec. Biol. 62, 1–19 (1971)

    Google Scholar 

  • Greenfield, L., Simpson, L., Kaplan, D.: Conversion of closed circular DNA molecules to single-nicked molecules by digestion with DNase I in the presence of ethidium bromide. Biochim. biophys. Acta (Amst.) 407, 365–375 (1975)

    Google Scholar 

  • Griffin, B.E., Fried, M., Cowie, A.: Polyoma DNA: A physical map. Proc. nat. Acad. Sci. (Wash.) 71, 2077–2081 (1974)

    Google Scholar 

  • Holliday, R.: a mechanism for gene conversion in fungi. Genet. Res. 5, 282–304 (1964)

    Google Scholar 

  • Holliday, R.: Studies on mitotic gene conversion in Ustilago maydis. Genet. Res. 8, 323–337 (1966)

    Google Scholar 

  • Holliday, R., Dickson, J.M.: The detection of post-meiotic segregation without tetrad analysis in Ustilago maydis. Evidence that a mutation defective in excision of pyrimidine dimers can repair mismatched bases in hybrid DNA. Molec gen. Genet. 153, 331–336 (1977)

    Google Scholar 

  • Holliday, R., Holloman, W.K., Banks, G.R., Unrau, P., Pugh, J.E.: Genetic and biochemical studies of recombination in Ustilago maydis. In: Mechanisms in recombination (R.F. Grell, ed.) pp. 239–262 New York: Plenum Press 1974

    Google Scholar 

  • Holloman, W.K.: Studies on a nuclease from Ustilago maydis. II. Substrate specificity and mode of action of the enzyme. J. biol. Chem. 248, 8114–8119 (1973)

    Google Scholar 

  • Holloman, W.K., Holliday, R.: Studies on a nuclease from Ustilago maydis. I. Purification, properties, and implication in recombination of the enzyme. J. biol. Chem. 248, 8107–8113 (1973)

    Google Scholar 

  • Kato, A.C., Bartok, K., Fraser, M.J., Denhardt, D.T.: Sensitivity of superhelical DNA to a single-strand specific endonuclease. Biochim. biophys. Acta (Amst.) 308, 68–78 (1973)

    Google Scholar 

  • Kelly, T.J., Smith, H.O.: A restriction enzyme from Hemophilus influenzae II Base sequence of the recognition site. J. molec. Biol. 51, 393–409 (1970)

    Google Scholar 

  • Landy, A., Foeller, C., Ross, W.: DNA fragments carrying genes for tRNA tyr1 . Nature (Lond.) 249, 738–742 (1974)

    Google Scholar 

  • Leblon, G.: Mechanism of gene conversion in Ascobolus immersus. I. Existence of a correlation between the origin of mutants induced by different mutagens and their conversion spectrum. Molec. gen. Genet. 115, 36–48 (1972a)

    Google Scholar 

  • Leblon, G.: Mechanism of gene conversion in Ascobolus immersus. II. The relationships between the genetic alterations in b1 or b2 mutants and their conversion spectrum. Molec. gen. Genet. 116, 322–335 (1972b)

    Google Scholar 

  • Leblon, G., Rossignol, J-L.: Mechanism of gene conversion in Ascobolus immersus. III. The interaction of heteroalleles in the conversion process. Molec. gen. Genet. 122, 165–182 (1973)

    Google Scholar 

  • Lindegren, C.C.: Gene conversion in Saccharomyces. J. Genet. 51, 625–637 (1953)

    Google Scholar 

  • Mechali, M., de Recondo, A-M., Girard, M.: Action of the S1 endonuclease from Aspergillus oryzae on simian virus 40 supercoiled component I DNA. Biochem. biophys. Res. Commun. 54, 1306–1320 (1973)

    Google Scholar 

  • Meselson, M.S.: The duplication and recombination of genes. In: Ideas in modern biology (J.A. Moore, ed.) pp. 5–16. New York: The Natural History Press, Garden City 1965

    Google Scholar 

  • Mitchell, M.B.: Aberrant recombination of pyridoxine mutants of Neurospora. Proc. nat. Acad. Sci. (Wash.) 41, 215–220 (1955)

    Google Scholar 

  • Murray, K., Murray, N.E.: Phage lambda receptor chromosomes for DNA fragments made with restriction endonuclease III of Haemophilus influenzae and restriction endonuclease I of Escherichia coli. J. molec. Biol. 98, 551–564 (1975)

    Google Scholar 

  • Panet, A., Van de Sande, J.H., Loewen, P.C., Khorana, H.G., Raae, A.J., Lillehaug, J.R., Kleppe, K.: Physical characterization and simultaneous purification of bacteriophage T4 induced polynucleotide kinase, polynucleotide ligase, and deoxyribonucleic acid polymerase. Biochem. 12, 5045–5050 (1973)

    Google Scholar 

  • Philippsen, P., Streeck, R.E., Zachau, H.G.: Defined fragments of calf, human, and rat DNA produced by restriction nucleases. Europ. J. Biochem. 45, 479–488 (1974)

    Google Scholar 

  • Randerath, K., Randerath, E.: Thin layer separation methods for nucleic acid derivatives. In: Methods in enzymology, XII A. (L. Grossman and K. Moldave, ed.), pp. 323–347. New York: Academic Press 1967

    Google Scholar 

  • Richardson, J.P.: Attachment of nascent RNA molecules to superhelical DNA. J. molec. Biol. 98, 565–579 (1975)

    Google Scholar 

  • Rossignol, J-L.: Existence of homogeneous categories of mutants exhibiting various conversion patterns in gene 75 of Ascobolus immersus. Genetics 63, 795–805 (1969)

    Google Scholar 

  • Sharp, P.A., Sudgen, B., Sambrook, J.: Detection of two restriction endonuclease activities in Haemophilus parainfluenzae using analytical agarose-ethidium bromide electrophoresis. Biochem. 12, 3055–3063 (1975)

    Google Scholar 

  • Shenk, T.E., Rhodes, C., Rigby, P.W.J., Berg, P.: Biochemical method for mapping mutational alteration in DNA with S1 nuclease: The location of deletions and temperature-sensitive mutations in simian virus 40. Proc. nat. Acad. Sci. (Wash.) 72, 989–993 (1975)

    Google Scholar 

  • Smith, J.D.: Transcription and processing of transfer RNA precursors. Progr. Nucl. Acid Res. Mol. Biol. 16, 25–73 (1976)

    Google Scholar 

  • Waldeck, W., Chowdhury, K., Gruss, P., Sauer, G.: Random cleavage of superhelical SV 40 DNA by S1 nuclease. Biochim. biophys. Acta (Amst.) 425, 157–167 (1976)

    Google Scholar 

  • Wang, J.C.: Interactions between twisted DNAs and enzymes: The effects of superhelical turns. J. molec. Biol. 87, 797–816 (1974)

    Google Scholar 

  • Weiss, B., Live, T.R., Richardson, C.C.: Enzymatic breakage and joining of DNA. V. End group labelling and analysis of DNA containing single strand breaks. J. biol. Chem. 243, 4530–4542 (1968)

    Google Scholar 

  • Whitehouse, H.L.K., Hastings, P.J.: Analysis of genetic recombination on the polaron hybrid DNA model. Genet. Res. 6, 27–92 (1965)

    Google Scholar 

  • Wiegand, R.C., Godson, G.N., Radding, C.M.: Specificity of the S1 nuclease from Aspergillus oryzae. J. biol. Chem. 250, 8848–8855 (1975)

    Google Scholar 

  • Yamamoto, K.R., Alberts, B.M.: Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology 40, 734–744 (1970)

    Google Scholar 

  • Zickler, H.: Genetische Untersuchungen an einen heteothallischen Askomyzeten (Bombardia lunata nov. spec.). Planta (Berl.) 22, 573–613 (1934)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by F. Stahl

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pukkila, P.J. The recognition of mismatched base pairs in DNA by DNase I from Ustilago maydis . Molec. gen. Genet. 161, 245–250 (1978). https://doi.org/10.1007/BF00330997

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00330997

Keywords

Navigation