Skip to main content
Log in

Genetic analysis of mannityl opine catabolism in octopine-type Agrobacterium tumefaciens strain 15955

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The genetic organization of functions responsible for mannityl opine catabolism of the Ti plasmid of Agrobacterium tumefaciens strain 15955 was investigated. A partial HindIII digest of pTi15955 was cloned into a broad host range cosmid and the clones obtained were tested for ability to confer mannityl opine degradation upon Agrobacterium. Inserts containing genes for catabolism of mannopinic acid, mannopine, agropine, and agropinic acid were obtained, spanning a segment of 43 kb on the Ti plasmid. Two clones conferring upon Agrobacterium the ability to catabolize the mannityl opines were mobilized to several Rhizobium sp., to Pseudomonas putida and P. fluorescens and to Escherichia coli. The catabolic functions were phenotypically expressed in all Rhizobium sp. tested, and in P. fluorescens, but not in P. putida or in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Casse F, Boucher C, Julliot JS, Michel M, Denarié J (1979) Identification and characterization of large plasmids in Rhizobium meliloti using agarose gel electrophoresis. J Gen Microbiol 113:229–242

    Google Scholar 

  • Chilton WS, Chilton M-D (1984) Mannityl opine analogs allow isolation of catabolic pathway regulatory mutants. J Bacteriol 158:650–658

    Google Scholar 

  • Chilton WS, Tempé J, Matzke M, Chilton M-D (1984) Succinamopine: a new crown gall opine. J Bacteriol 157:357–362

    Google Scholar 

  • Coxon TD, Davies AMC, Fenwick GR, Self R, Firmin JL, Lipkin D, Janes NF (1980) Agropine, a new amino acid derivative from crown-gall tumors. Tetrahedron Lett 21:495–498

    Google Scholar 

  • Darzins A, Chakrabarty AM (1984) Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa. J Bacteriol 159:9–18

    Google Scholar 

  • De Greve H, Decraemer H, Seurinck J, Van Montagu M, Schell J (1981) The functional organization of the Agrobacterium tumefaciens plasmid pTiB653. Plasmid 6:235–248

    Google Scholar 

  • Depicker A, De Wilde M, De Vos G, De Vos M, Van Montagu M, Schell J (1980) Molecular cloning of overlapping segments of the nopaline Ti plasmid pTIC58 as a means to restriction endonuclease mapping. Plasmid 3:193–211

    Google Scholar 

  • Dessaux Y, Guyon P, Farrand SK, Petit A, Tempé J (1986) Agrobacterium Ti and Ri plasmids specify enzymic lactonization of mannopine to agropine. J Gen Microbiol 132:2549–2559

    Google Scholar 

  • De Vos G, De Beuckeleer M, Van Montagu M, Schell J (1981) Restriction endonuclease mapping of the tumor inducing plasmid pTiACH5 of Agrobacterium tumefaciens. Plasmid 6:249–253

    Google Scholar 

  • Ditta G, Stanfield S, Corbin D, Helsinski DR (1980) Broad host range DNA cloning system for gram-negative bacteria: contruction of a gene bank of R. meliloti Proc Natl Acad Sci USA 77:7347–7351

    Google Scholar 

  • Ellis JG, Murphy PJ (1981) Four new opines from crown gall tumors — their detection and properties. Mol Gen Genet 181:36–43

    Google Scholar 

  • Ellis JG, Ryder MH, Tate ME (1984) Agrobacterium tumefaciens TR-DNA encodes a pathway for agropine biosynthesis. Mol Gen Genet 195:466–473

    Google Scholar 

  • Farrand SK, Kado CI, Ireland CR (1981) Suppression of tumorigenicity by the IncW R plasmid pSa in Agrobacterium tumefaciens. Mol Gen Genet 181:44–51

    Google Scholar 

  • Farrand SK, Slota JE, Shim J-S, Kerr A (1985) Tn5 insertions in the agrocin 84 plasmid: the conjugal nature of pAgK84 and the locations of determinants for transfer and agrocin 84 production. Plasmid 13:106–117

    Google Scholar 

  • Firmin JL, Fenwick GR (1978) Agropine: a major new plasmid-determined metabolite in crown gall tumours. Nature 276:842–844

    Google Scholar 

  • Gelvin SB (1984) Plant tumorigenesis. In: Kosuge T, Nester EW (eds) Plant microbe interactions: molecular and genetic perspectives, vol 1. Macmillian Publishing, New York, p 343–377

    Google Scholar 

  • Gelvin SB, Gordon MP, Nester EW, Aronson AI (1981) Transcription of the Agrobacterium Ti plasmid in the bacterium and in crown gall tumors. Plasmid 6:17–29

    Google Scholar 

  • Gheysen G, Dhaese P, Van Montagu M, Schell J (1985) DNA flux across genetic barriers: the crown gall phenomenon. In: Hohn B, Dennis ES (eds) Plant gene research: genetic flux in plant. Springer, Wien, New York, p 11–47

    Google Scholar 

  • Guyon P, Chilton M-D, Petit A, Tempé J (1980) Agropine in “null-type” tumors: evidence for generality of the opine concept. Proc Natl Acad Sci USA 77:2693–2697

    Google Scholar 

  • Hille J, Hoekema A, Hooykaas PJJ, Schilperoort RA (1984) Gene organization of the Ti-plasmid. In: Verma DPS, Hohn T (eds) Genes involved in microbe-plant interactions. Springer, Wien, New York, p 287–309

    Google Scholar 

  • Holsters M, De Waele D, Depicker A, Messens E, Van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    Google Scholar 

  • Holsters M, Silva B, Van Vliet F, Genetello C, De Block M, Dhaese P, Depicker A, Inze D, Engler G, Villaroel R, Van Montagu M, Schell J (1980) The functional organization of the nopaline A. tumefaciens plasmid pTiC58. Plasmid 3:212–230

    Google Scholar 

  • Hooykaas PJJ (1983) Plasmid genes essential for the interactions of Agrobacteria and Rhizobia with plant cells. In: Pühler A (ed) Molecular genetics of the bacteria-plant interaction. Springer, Berlin, Heidelberg, p 229–239

    Google Scholar 

  • Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Korsch A (1977) Transfer of the Agrobacterium tumefaciens Ti plasmid to avirulent agrobacteria and toe Rhizobium ex planta. J Gen Microbiol 98:477–484

    Google Scholar 

  • Kiss GB, Vincze E, Kalman Z, Forrai T, Kondorosi A (1979) Genetic and biochemical analysis of mutants affected in nitrate reduction in Rhizobium meliloti. J Gen Microbiol 113:105–118

    Google Scholar 

  • Knauf VC, Nester EW (1982) Wide host range cloning vectors: a cosmid clone bank of an Agrobacterium Ti plasmid. Plasmid 8:45–54

    Google Scholar 

  • Mandel M, Higa J (1970) Calcium-dependent bacteriophage DNA infection J Mol Biol 53:159–162

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Nester EW, Gordon MP, Amasino RM, Yanofsky MF (1984) Crown gall: a molecular and physiological analysis. Annu Rev Plant Physiol 35:387–413

    Google Scholar 

  • Olexy WM, Bird T, Grieble HG, Farrand SK (1979) Hospital isolates of Serratia marcescens transferring ampicillin, carbenicillin and gentamicin resistance to other gram-negative bacteria including Pseudomonas aeruginosa. Antimicrob Agents Chemother 15:93–100

    Google Scholar 

  • Petit A, Tempé J (1978) Isolation of Agrobacterium Ti plasmid regulatory mutants. Mol Gen Genet 167:147–155

    Google Scholar 

  • Petit A, Tempé J (1985) The function of T-DNA in Nature. In: Van Vloten-Doting L, Groot GSP, Hall TC (eds) Molecular form and function of the plant genome, Plenum Press, New York, p 625–636

    Google Scholar 

  • Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, Tempé J (1983) Further extension of the opine concept: plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Mol Gen Genet 190:204–214

    Google Scholar 

  • Pühler A (1983) Molecular genetics of the bacteria-plant interactions. Springer, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Stachel SE, An G, Flores C, Nester EW (1985) A Tn3lacZ transposon for the random generation of β-galactosidase gene fusions: application to the analysis of gene expression in Agrobacterium. EMBO J 4:891–898

    Google Scholar 

  • Tate ME, Ellis JG, Kerr A, Tempé J, Murray KE, Shaw KJ (1982) Agropine: a revised structure. Carbohydr Res 104:105–120

    Google Scholar 

  • Tempé J, Guyon P, Tepfer DA, Petit A (1979) The role of opines in the ecology of the Ti plasmids of Agrobacterium. In: Timmis KN, Pühler A (eds) Plasmids of medical, environmental and commercial importance. Elsevier North Holland Biomedical Press, Amsterdam, New York, Oxford, p 353–363

    Google Scholar 

  • Tepfer DA, Tempé J (1981) Production d'agropine par des racines formées sous l'action d'Agrobacterium rhizogenes. CR Séances Acad Sci Paris [III] 292:153–156

    Google Scholar 

  • Trevelyan WE, Procter DP, Harrisson JP (1950) Detection of sugars on paper chromatography. Nature 166:444–445

    Google Scholar 

  • Van Montagu M, Schell J (1979) The plasmids of Agrobacterium. In: Timmis KN, Pühler A (eds) Plasmids of medical, environmental and commercial importance, Elsevier North Holland Biomedical Press, Amsterdam, New York, Oxford, p 71–95

    Google Scholar 

  • Verma DPS, Hohn T (1984) Plant gene research: genes involved in microbe plant interactions, Springer, Wien, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. Schell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dessaux, Y., Tempé, J. & Farrand, S.K. Genetic analysis of mannityl opine catabolism in octopine-type Agrobacterium tumefaciens strain 15955. Mole Gen Genet 208, 301–308 (1987). https://doi.org/10.1007/BF00330457

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00330457

Key words

Navigation