Skip to main content
Log in

Synthesis and degradation of lac mRNA in E. coli depleted of 30S ribosomal subunits

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Escherichia coli was depleted of active ribosomes by a thermal shock at 47°C which quantitatively destroyed the 30S ribosomal subunits. During recovery, RNA is synthesized while protein synthesis resumes only after about 90 minutes. It is shown that lac mRNA is synthesized in the complete absence of ribosomal activity and hence RNA synthesis is not coupled to protein synthesis. Transcription time and average transcript length were slightly less than in untreated cells. lac mRNA was degraded much more slowly in bacteria depleted of ribosomes. In E. coli W both functional half life (T1/2=28 min vs. 2.25 in untreated cells) and chemical stability (T1/2=32 min vs. 7 in untreated cells) was increased. The analysis of rna and pnp mutants showed that polynucleotide phosphorylase is involved in lac mRNA degradation in heat treated cells but that RNase I is not. The functional T1/2 was increased in pnp mutants and was 95 min during the recovery period. The rate of chemical decay is so slow that the half-life cannot be accurately determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SSC:

0.15 M NaCl, 0.015 M sodium citrate (pH 7.0)

mRNA:

messenger ribonucleic acid

rRNA:

ribosomal RNA

IPTG:

isopropyl-gb-D-thiogalactopyranoside

ONPG:

O-nitrophenyl-β-D-galactopyranoside

cAMP:

adenosine 3′:5′-cyclic monophosphoric acid

SDS:

sodium dodecyl sulphate

TCA:

trichloroacetic acid

References

  • Adensik, M., Levinthal, C.: The synthesis and degradation of lactose operon messenger RNA in E. coli. Cold Spring Harbor Symp. Quant. Biol. 35, 451–459 (1970)

    Google Scholar 

  • Apirion, D.: Degradation of RNA in Escherichia coli. A Hypothesis. Mol. Gen. Genet. 122, 313–322 (1973)

    Google Scholar 

  • Artman, M., Ennis, H.L.: Dissociation of Lac messenger ribonucleic acid transcription from translation during recovery from inhibition of protein synthesis. J. Bacteriol. 110, 652–660 (1972)

    Google Scholar 

  • Cohen, T., Silberstein, A., Kuhn, J., Tal, M.: Relief of polarity in E. coli depleted of 30S ribosomal subunits. Mol. Gen. Genet. 173, 127–134 (1979)

    Google Scholar 

  • Craig, F.: Synthesis of specific stabilized mRNA when translocation is blocked in E. coli. Genetics 70, 331–336 (1972)

    Google Scholar 

  • Davis, B.D., Mingioli, E.S.: Mutants of Escherichia coli requiring methionine or vitamin B12. J. Bacteriol. 60, 17–28 (1950)

    Google Scholar 

  • Ennis, H.L., Kievitt, K.D.: β-galactosidase mRNA made during recovery from inhibition of protein synthesis is not translated. J. Biol. Chem. 251, 2854–2860 (1976)

    Google Scholar 

  • Gilbert, W.: Starting and stopping sequences for RNA Polymerase. In: RNA Polymerase (Losick, R. and Chamberlin, M., eds.), pp. 193–205. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1976

    Google Scholar 

  • Gillespie, D., Spiegelman, S.: A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J. Mol. Biol. 12, 829–842 (1965)

    Google Scholar 

  • Imamoto, F.: Diversity of regulation of genetic transcription. I. Effect of antibiotics which inhibit the process of translation on RNA metabolism in Escherichia coli. J. Mol. Biol. 74, 113–136 (1973)

    Google Scholar 

  • Imamoto, F., Kano, Y.: Inhibition of transcription of the tryptophan operon in Escherichia coli by a block in initiation of translation. Nature New Biol. 232, 169–173 (1971)

    Google Scholar 

  • Jacobs, K.A., Shen, V., Schlessinger, D.: Coupling of lac mRNA transcription to translation in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 75, 158–161 (1978)

    Google Scholar 

  • Kaplan, R., Apirion, D.: The involvement of ribonuclease I, ribonuclease II and polynucleotide phosphorylase in the degradation of stable ribonucleic acid during carbon starvation in Escherichia coli. J. Biol. Chem. 249, 149–151 (1974)

    Google Scholar 

  • Kennell, D., Simmons, C.: Synthesis and decay of mRNA from lactose operon of E. coli during amino-acid starvation. J. Mol. Biol. 70, 451–464 (1972)

    Google Scholar 

  • Kepes, A.: Kinetics of induced enzyme synthesis. Determination of the mean life of galactosidase-specific messenger RNA. Biochim. Biophys. Acta 76, 293–309 (1963)

    Google Scholar 

  • Kimhi, Y., Littauer, U.Z.: Purification and properties of polynucleotide phosphorylase from Escherichia coli. J. Biol. Chem. 243, 231–240 (1968)

    Google Scholar 

  • Kivity-Vogel, T., Elson, D.: On the metabolic inactivation of messenger RNA in E. coli: RNase I and pnp. Biochim. Biophys. Acta 138, 66–75 (1967)

    Google Scholar 

  • Kivity-Vogel, T., Elson, D.: A correlation between RNase II and the in vivo inactivation of mRNA in E. coli. Biochem. Biophys. Res. Commun. 33, 412–417 (1968)

    Google Scholar 

  • Klee, C.B., Singer, M.F.: The processive degradation of individual polyribonucleotide chains. II. Micrococcus lysodeikticus polynucleotide phosphorylase. J. Biol. Chem. 243, 923–927 (1968)

    Google Scholar 

  • Miller, J.H.: Experiments in molecular genetics. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1972

    Google Scholar 

  • Morikawa, N., Imamoto, F.: On the degradation of messenger RNA for the tryptophan operon in Escherichia coli. Nature 223, 37–40 (1969)

    Google Scholar 

  • Morse, D.E.: Polarity induced by chloramphenicol and relief by SuA. J. Mol. Biol. 55, 113–118 (1971)

    Google Scholar 

  • Morse, D.E., Guertin, M.: Regulation of mRNA utilization and degradation by amino-acid starvation. Nature New Biol. 232, 165–169 (1971)

    Google Scholar 

  • Morse, D.E., Mosteller, R.D., Yanofsky, C.: Dynamics of synthesis, translation and degradation of trp operon mRNA in E. coli. Cold Spring Harbor Symp. Quant. Biol. 34, 725–740 (1969)

    Google Scholar 

  • Nikolaev, N., Silengo, L., Schlessinger, D.: A role for ribonuclease III in processing of ribosomal ribonucleic acid and messenger ribonucleic acid precursors in Escherichia coli. J. Biol. Chem. 248, 7967–7969 (1973)

    Google Scholar 

  • Perlman, R., Pastan I: Cyclic 3′–5′ AMP: Stimulation of β-galactosidase and tryptophanase induction in E. coli. Biochem. Biophys. Res. Commun. 30, 656–664 (1968)

    Google Scholar 

  • Reiner, A.M.: Isolation and mapping of polynucleotide phosphorylase mutants of Escherichia coli. J. Bacteriol. 97, 1431–1436 (1969)

    Google Scholar 

  • Revel, M., Herzberg, M., Greenshpan, H.: Intiator protein dependent binding of messenger RNA to the ribosome. Cold Spring Harbor Symp. Quant. Biol. 34, 261–275 (1969)

    Google Scholar 

  • Ron, E.Z., Davis, B.D.: Growth rate of Escherichia coli at elevated temperatures: Limitation by methionine. J. Bacteriol. 107, 391–396 (1971)

    Google Scholar 

  • Rose, J.K., Mosteller, R.D., Yanofsky, C.: Tryptophan messenger ribonucleic acid elongation rates and steady-state levels of tryptophan operon enzymes under various growth conditions. J. Mol. Biol. 51, 541–550 (1970)

    Google Scholar 

  • Schlessinger, D., Jacobs, K.A., Gupta, R.S., Kano, Y., Imamoto, F.: Decay of individual Escherichia coli trp messenger RNA molecules is sequentially ordered. J. Mol. Biol. 110, 421–439 (1977)

    Google Scholar 

  • Schneider, E., Blundell, M., Kennell, D.: Translation and mRNA decay. Mol. Gen. Genet. 160, 121–129 (1978)

    Google Scholar 

  • Shapiro, J., Machattie, L., Eron, L., Ihler, G., Ippen, K., Beckwith, J.: Isolation of pure lac operon DNA. Nature 224, 768–774 (1969)

    Google Scholar 

  • Stent, G.S.: Genetic transcription. Proc. R. Soc. Lond. [Biol.] 164, 181–197 (1966)

    Google Scholar 

  • Tal, M., Kuhn J., Har-El, R., Silberstein A.: lac mRNA: Metabolism in the absence of ribosomes. 11th FEBS Meeting Copenhagen Abstract A2-A 203 2 (1977) b

  • Tal, M., Silberstein, A., Møyner, K.: In vivo reassembly of 30S ribosomal subunits following their specific destruction by thermal shock. Biochim. Biophys. Acta 479, 479–496 (1977) a

    Google Scholar 

  • Varmus, H.E., Perlman, R.L., Pastan, I.: Regulation of lac transcription in antibiotic-treated E. coli. Nature New Biol. 230, 41–44 (1971)

    Google Scholar 

  • Weiss, A., Tal, M.: In vivo thermal stability and activation of Escherichia coli ribosomes. Biochemistry 12, 4534–4540 (1973)

    Google Scholar 

  • Yanofsky, C., Lennox, E.S.: Transduction and recombination study of linkage relationships among the genes controlling Tryptophan synthesis in Escherichia coli. Virology 8, 425–447 (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H.G. Wittmann

The paper forms part of the first author's M.Sc. thesis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Har-El, R., Silberstein, A., Kuhn, J. et al. Synthesis and degradation of lac mRNA in E. coli depleted of 30S ribosomal subunits. Molec. gen. Genet. 173, 135–144 (1979). https://doi.org/10.1007/BF00330303

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00330303

Keywords

Navigation