Skip to main content
Log in

Relief of polarity in E. coli depleted of 30S ribosomal subunits

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Escherichia coli was depleted of ribosomes by a thermal shock at 47° C which quantitatively destroyed the 30S ribosomal subunits. During recovery in minimal medium at 30° C RNA is synthesized while protein synthesis resumes only after about 90 min. It is shown that lac mRNA is synthesized in the complete absence of ribosomal activity and hence RNA synthesis is not coupled to protein synthesis. Lac mRNA from a series of lac nonsense mutants was examined in both heated and untreated cells. It was found that the polar effect of nonsense mutation is relieved in the absence of ribosomes and that this relief is due to the synthesis of larger mRNA molecules. Since Rho remained active in thermally treated cells, premature termination at secondary signals within the lac operon must also depend on the presence of active ribosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SSC:

0.15 M Nacl, 0.015 M sodium citrate (pH 7.0)

mRNA:

messenger ribonucleic acid

IPTG:

isopropyl-β-D-thiogalactopyranoside

cAMP:

adenosine 3′: 5′-cyclic monophosphoric acid

LDS:

lithium dodecyl sulfate

TCA:

trichloroacetic acid

References

  • Adesnik, M., Levinthal, C.: The synthesis and degradation of lactose operon messenger RNA in E. coli. Cold Spring Harbor Symp. Quant. Biol. 35, 451–459 (1970)

    Google Scholar 

  • Adhya, S., Gottesman, M., Crombugghe, de B.: Release of polarity in Escherichia coli by gene N of phage λ: termination and antitermination of transcription. Proc. Natl. Acad. Sci. U.S.A. 71, 2543–2538 (1974)

    Google Scholar 

  • Adhya, S., Gottesman, M., Crombugghe, de B., Court, D.: Transcription termination regulates gene expression. In: RNA polymerase (Losick, R., Chamberlin, M., eds.) pp. 719–730 New York: Cold Spring Harbor Laboratory 1976

    Google Scholar 

  • Beckwith, J.: Restoration of operon activity by suppressors. Biochim. Biophys. Acta 76, 162–164 (1963)

    Google Scholar 

  • Contesse, G., Crepin, M., Gros, F.: Transcription of the lactose operon in E. coli. In: The lactose operon (Beckwith, J.R., Zipser D., eds.), pp. 111–141. New York: Cold Spring Harbor Laboratory 1970

    Google Scholar 

  • Crombugghe, de B., Adhya, S., Gottesman, M., Pastan, I.: Effect of rho on transcription of bacterial operons. Nature New Biol. 241 260–264 (1973)

    Google Scholar 

  • Davis, B.D., Mingioli, E.S.: Mutants of Escherichia coli requiring methionine or vitamin B12. J. Bacteriol. 60, 17–28 (1950)

    Google Scholar 

  • Franklin, N.C.: Altered reading of genetic signals fused to the N operon of bacteriophage λ: genetic evidence for modification of poymerase by the protein product of the N gene. J. Mol. Biol. 89 33–48 (1974)

    Google Scholar 

  • Franklin, N.C., Luria, S.E.: Transduction by bacteriophage P1 and the properties of the lac genetic region in E. coli and S. dysenteriae. Virology 15, 299–311 (1961)

    Google Scholar 

  • Franklin, N.C., Yanofsky, C.: The N protein of λ: Evidence bearing on transcription termination, polarity and the alteration of E. coli RNA polymerase. In: RNA polymerase (Losick, R., Chamberlin, M., eds.) pp. 693–706, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1976

    Google Scholar 

  • Gillespie, D., Spiegelman, S.: A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J. Mol. Biol. 12, 829–842 (1965)

    Google Scholar 

  • Gupta, R.S., Schlessinger, D.: Differential modes of chemical decay for early and late Lambda messenger RNA. J. Mol. Biol. 92, 311–318 (1975)

    Google Scholar 

  • Har-El, R., Silberstein, A., Kuhn, J., Tal, M.: Synthesis and degradation of lac mRNA in E. coli depleted of 30S ribosomal subunits. Mol. Gen. Genet. 173, 135–144 (1979)

    Google Scholar 

  • Imamoto, F., Kano, Y.: Inhibition of transcription of the tryptophan operon in Escherichia coli by a block in initiation of translation. Nature New Biol. 232, 169–173 (1971)

    Google Scholar 

  • Imamoto, F., Yanofsky, C.: Transcription of the tryptophan operon in polarity mutants of Escherichia coli. I. Characterization of the tryptophan messenger RNA of polar mutants. J. Mol. Biol. 28, 1–23 (1967a)

    Google Scholar 

  • Imamoto, F., Yanofsky, C.: Transcription of the tryptophan operon in polarity mutants of Escherichia coli. II. Evidence for normal production of trp-mRNA molecules and for permature termination of transcription. J. Mol. Biol. 28, 25–35 (1967b)

    Google Scholar 

  • Jacob, F., Monod, J.: Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961)

    Google Scholar 

  • Jacobs, K.A., Shen, V., Schlessinger, D.: Coupling of lac mRNA transcription to translation in Escherichia coli cell extracts. Proc. Natl. Acad. Sci. U.S.A. 75, 158–161 (1978)

    Google Scholar 

  • Korn, L.J., Yanofsky, C.: Polarity suppressors defective in transcription termination at the attenuator of the tryptophan operon of Escherichia coli have altered Rho factor. J. Mol. Biol. 106, 231–241 (1976)

    Google Scholar 

  • Kourilsky, P., Bourguignon, M.F., Gros, F.: Kinetics of viral transcription after induction of prophage. In: Bacteriophage Lambda (A.D. Hershey, ed.), pp. 647–666. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1971

    Google Scholar 

  • Martin, R.G., Talal, N.: Translation and polarity in the histidine operon. IV. Relation of polarity to map position in his C. J. Mol. Biol. 36, 219–229 (1968)

    Google Scholar 

  • Miller, J.H.: Experiments in molecular genetics. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory 1972

    Google Scholar 

  • Morrison, S.L., Zipser, D.: Polypeptide products of nonsense mutations I. Termination fragments from nonsense mutations in the Z gene of the lac operon of Escherichia coli. J. Mol. Biol. 50, 359–371 (1970)

    Google Scholar 

  • Morse, D.E., Guertin, M.: Regulation of mRNA utilization and degradation by amino acid starvation. Nature New Biol. 232, 165–169 (1971)

    Google Scholar 

  • Morse, D.E., Yanofsky, C.: Polarity and the degradation of mRNA. Nature 224, 329–331 (1969)

    Google Scholar 

  • Newton, A.: Re-initiation of polypeptide synthesis and polarity in the lac operon of Escherichia coli. J. Mol. Biol. 41, 329–339 (1969)

    Google Scholar 

  • Newton, A., Beckwith, J., Zipser, D., Brenner, S.: Nonsense mutants and polarity in the lac operon of Escherichia coli. J. Mol. Biol. 14, 290–295 (1965)

    Google Scholar 

  • Revel, M., Herzberg, M., Greenshpan, H.: Initiator protein dependent binding of messenger RNA to the ribosome. Cold Spring Harbor Symp. Quant. Biol. 34, 261–275 (1969)

    Google Scholar 

  • Richardson, J.P.: RNA synthesis termination factor Rho. FEBS 11th meeting Copenhagen, In: Gene expression (Clark, B.F.C., Klenow, H., Zeuthen, J., eds.), pp. 153–162. Oxford, Pergamon Press (1977)

    Google Scholar 

  • Richardson, J.P., Grimley, C., Lowery, C.: Transcription termination factor Rho activity is altered in Escherichia coli with suA mutations. Proc. Natl. Acad. Sci. U.S.A. 72, 1725–1728 (1975)

    Google Scholar 

  • Roberts, J.W.: Termination factor for RNA synthesis. Nature 224, 1168–1174 (1969)

    Google Scholar 

  • Ron, E.Z., Davis, B.D.: Growth rate of Escherichia coli at elevated temperatures: Limitation by methionine. J. Bacteriol. 107, 391–396 (1971)

    Google Scholar 

  • Sarabhai, A.S., Stutton, A.O.W., Brenner, S., Bolle, A.: Colinearity of the gene with the polypeptide chain. Nature 201, 13–17 (1964)

    Google Scholar 

  • Stent, G.S.: Genetic transcription. Proc. R. Soc. Lond. [Biol.] 164, 181–197 (1966)

    Google Scholar 

  • Tal, M., Silberstein, A., Myner, K.: In vivo reassembly of 30S ribosomal subunits following their specific destruction by thermal shock. Biochim. Biophys. Acta. 479, 479–496 (1977)

    Google Scholar 

  • Varmus, H.E., Perlman, R.L., Pastan, I.: Regulation of lac transcription in antibiotic-treated E. coli. Nature New Biol. 230, 41–44 (1971)

    Google Scholar 

  • Yanofsky, C., Ito, J.: Nonsense codons and polarity in the tryptophan operon. J. Mol. Biol. 21, 313–334 (1966)

    Google Scholar 

  • Zipser, D., Zabell, S., Rothman, J., Grodzicker, T., Wenk, M.: Fine structure of the gradient of polarity in the Z gene of the lac operon of Escherichia coli. J. Mol. Biol. 49, 251–254 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H.G. Wittmann

The paper forms part of the first author's M.Sc. thesis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, T., Silberstein, A., Kuhn, J. et al. Relief of polarity in E. coli depleted of 30S ribosomal subunits. Molec. gen. Genet. 173, 127–134 (1979). https://doi.org/10.1007/BF00330302

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00330302

Keywords

Navigation