Skip to main content
Log in

Mikrotubuläre Formationen in Zisternen des endoplasmatischen Retikulums

Elektronenmikroskopische Untersuchungen an Bindegewebszellen von Lymnea stagnalis L. (Pulmonata)

Microtubular formations in cysterns of the endoplasmic reticulum

Electronmicroscopical investigations of connective tissue cells in Lymnea stagnalis L. (Pulmonata)

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

In the cisternae of granular endoplasmic reticulum of connective tissue cells of Lymnea stagnalis L. (so called Leydig cells) bundles of thread-like microtubules are present. One microtubule has a diameter of about 250 Å. The wall consists of 12 circular arranged subunits which, tangentially sectioned, are composed of close packed, diskshaped elements. It is assumed that the microtubules exhibit an intermediate stage of cellular synthesis, showing temporarily the pattern of a structural protein.

Zusammenfassung

In Zisternen des granulären ER der Leydigschen Bindegewebszellen von Lymnea stagnalis L. finden sich Bündel relativ dickwandiger, drahtartig wirkender Mikrotubuli, deren Durchmesser 250 Å beträgt. Ihre Wand besteht aus 12 zirkulär angeordneten Untereinheiten, die in der Längsrichtung der Röhrchen als ca. 30 Å dicke, etwas unregelmäßig gestaltete Querbänder in Erscheinung treten. Es wird vermutet, daß die beschriebenen mikrotubulären Strukturen nur temporär ausgebildete Substrate geordneter Proteinkomplexe darstellen, die als Zwischenprodukte eines von den Leydigschen Zellen synthetisierten Materials aufzufassen sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Anderson, W. A., Weissmann, A., Ellis, R. A.: A comparative study of microtubules in vertebrate and invertebrate cells. Z. Zellforsch. 71, 1–13 (1966).

    Google Scholar 

  • Auber, J.: Mode d'accroissement des fibrilles au cours de la nymphose de Calliphora erythrocephala. C. R. Acad. Sci. (Paris) 254, 4074–4075 (1962).

    Google Scholar 

  • Barnicot, N. A.: A note on the structure of spindle fibres. J. Cell Sci. 1, 217–222 (1966).

    Google Scholar 

  • Bassot, J. M.: Une forme microtubulaire et paracristalline de réticulum endoplasmique dans les photocytes des Annélides polynoinae. J. Cell Biol. 31, 135–158 (1966).

    Google Scholar 

  • Behnke, O.: A preliminary report on “miorotubules” in undifferentiated and differentiated vertebrate cells. J. Ultrastruct. Res. 11, 139–146 (1964).

    Google Scholar 

  • —: A comparative study of microtubules of disk-shaped blood cells. J. Ultrastruct. Res. 31, 61–75 (1970).

    Google Scholar 

  • —, Forer, A.: Evidence for four classes of microtubules in individual cells. J. Cell Sci. 2, 169–192 (1967).

    Google Scholar 

  • —, Zelander, T.: Filamentous substructure of microtubules in the marginal bundle of mammalian blood platelets. J. Ultrastruct. Res. 19, 147–165 (1967).

    Google Scholar 

  • Bertolini, B., Monaco, G., Rossi, A.: Ultrastructure of a regular arrangement of microtubules and neurofilaments. J. Ultrastruct. Res. 33, 173–186 (1970).

    Google Scholar 

  • Boler, R. K.: Fine structure of canine Kupffer cells and their microtubule-containing cytosomes. Anat. Rec. 163, 483–96 (1969).

    Google Scholar 

  • —, Arhelger, R. B.: Microtubules in cytosomes and cytosegresomes of rabbit proximal tubule epithelium. Lab. Invest. 15, 302–311 (1966).

    Google Scholar 

  • Bouck, G. J.: Extracellular microtubules. The origin, structure and attachement of flagellar hairs in Fucus and Ascophyllum antherozoids. J. Cell Biol. 40, 446–460 (1969).

    Google Scholar 

  • Brandes, J., Wetter, C.: sClassification of elongated plant viruses on the basis of particle morphology. Virology 8, 99–115 (1959).

    Google Scholar 

  • Byers, B., Porter, K. R.: Oriented microtubules in elongating cells of the developing lens rudiment after induction. Proc. nat. Acad. Sci. (Wash.) 52, 1091–1099 (1964).

    Google Scholar 

  • Dietert, S. E.: The occurence of tubular intramitochondrial inclusions in the post-mortem zona fasciculata of the rat adrenal. Anat. Rec. 165, 41–54 (1969).

    Google Scholar 

  • Fawcett, D. W., Witebsky, F.: Observations on the ultrastructure of nucleated erythrocytes and thrombocytes with particular reference on the structural basis of their discoidal shape. Z. Zellforsch. 62, 785–806 (1964).

    Google Scholar 

  • Gall, J. G.: Microtubule fine structure. J. Cell Biol. 31, 639–643 (1966).

    Google Scholar 

  • Gibbons, I. R., Grimstone, A. V.: On flagellar structure in certain flagellates. J. biophys. biochem. Cytol. 7, 697–715 (1960).

    Google Scholar 

  • Giocomelli, F., Wiener, J., Spiro, O.: Cytological alterations related to stimulation of the zona glomerulosa of the adrenal gland. J. Cell Biol. 26, 499–521 (1965).

    Google Scholar 

  • Grimstone, A. V., Cleveland, L. R.: The fine structure and function of the contractile axostyles of certain flagellates. J. Cell Biol. 24, 387–400 (1965).

    Google Scholar 

  • —, Klug, A.: Observation on the substructure of flagellar fibres. J. Cell Sci. 1, 351–362 (1966).

    Google Scholar 

  • Haydon, G. B., Taylor, A. D.: Microtubules in hamster platelets. J. Cell Biol. 26, 673–676 (1965).

    Google Scholar 

  • Heath, I. B., Greenwood, A. D., Griffith, H. B.: The origin of flimmer in Saprolegnia, Dictyuchus, Synura and Cryptomonan. J. Cell Sci. 7, 445–461 (1970).

    Google Scholar 

  • Hepler, P. K., Newcomb, E. H.: Microtubules and fibrils in the cytoplasm of Coleus cells undergoing secondary wall deposition. J. Cell Biol. 20, 529–533 (1964).

    Google Scholar 

  • Iterson, W. v., Hoeniger, J. F. M., Zanten, E. N. v.: A “microtubule” in a bacterium. J. Cell Biol. 32, 1–10 (1967).

    Google Scholar 

  • Journey, L. J.: Cytoplasmio microtubules in mouse peritoneal macrophages during rejection of MCIH ascites tumor cells. Cancer Res. 24, 1393–1405 (1964).

    Google Scholar 

  • Kane, R. E.: The mitotic apparatus. Fine structure of the isolated unit. J. Cell Biol. 15, 279–287 (1962).

    Google Scholar 

  • Kaye, J. S.: The fine structure and arrangement of microcylinders in the lumina of flagellar fibers in cricket spermatids. J. Cell Biol. 45, 416–430 (1970).

    Google Scholar 

  • Kisker, G. L.: Über Anordnung und Bau der interstitiellen Bindesubstanzen von Helix pomatia L. Z. wiss. Zool. 121, 64–125 (1923/24).

    Google Scholar 

  • Ledbetter, M., Porter, K. R.: Morphology of microtubules of plant cells. Science 144, 872–874 (1964).

    Google Scholar 

  • Lennep, E. W. van, Lanzing, W. J. R.: The ultrastructure of glandular cells in the external dentritic organ of some marine catfish. J. Ultrastruct. Res. 18, 333–344 (1967).

    Google Scholar 

  • Leydig, F.: Über Paludina vivipara. Z. wiss. Zool. 2, 125–197 (1850).

    Google Scholar 

  • MacGregor, H. C., Stebbings, H.: A massive system of microtubules associated with cytoplasmic movement in telotrophic ovarioles. J. Cell Sci. 6, 431–449 (1970).

    Google Scholar 

  • Markham, R., Frey, S., Hills, G. J.: Methods for the enhancement of image detail and accentuation of structure in electron microscopy. Virology 20, 88–102 (1963).

    Google Scholar 

  • Neustein, H. B.: Hemoglobin absorption in the proximal tubules of the kidney in the rabbit. J. Ultrastruct. Res. 17, 565–587 (1967).

    Google Scholar 

  • Newcomb, E. H., Bonnett, H. T.: Cytoplasmic microtubule and wall microfibril orientation in root hairs of radish. J. Cell Biol. 27, 575–589 (1965).

    Google Scholar 

  • Parthasarathy, M. V., Ithaka, N. Y., Mühlethaler, K.: Ultrastructure of protein tubules in differentiating sieve elements. Cytobiologie 1, 17–36 (1969).

    Google Scholar 

  • Pochon-Masson, J.: Structure et fonctions des infrastructures cellulaires dénommées „microtubules“. Ann. Biol. 6, 361–390 (1967).

    Google Scholar 

  • Porter, K. R.: Cytoplasmic microtubules and their function. Principles of biomolecular organization. Wolstenholme, G. E. W. and O'Connor, M. (eds.), p. 308–356. London: Churchill 1966.

    Google Scholar 

  • —, Tilney, L. G.: Microtubules and intracellular motility. Science 150, 382 (1965).

    Google Scholar 

  • Raine, C. S., Wisniewski, H.: On the occurence of microtubules within mature astrocytes. Anat. Rec. 167, 303–308 (1970).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–211 (1963).

    Google Scholar 

  • Ringo, L. D.: The arrangement of subunits in flagellar fibers. J. Ultrastruct. Res. 17, 266–277 (1967).

    Google Scholar 

  • Roth, L. E., Pihlaja, D. J., Shigenaka, Y.: Microtubules in heliozoan axopodium. I. The gradion hypothesis of allosterism in structural proteins. J. Ultrastruct. Res. 30, 7–37 (1970).

    Google Scholar 

  • —, Shigenaka, Y.: Microtubules in the heliozoan axopodium. II. Rapid degradation by cupric and nickelous ions. J. Ultrastruct. Res. 31, 356–374 (1970).

    Google Scholar 

  • Sabnis, D. D., Jacobs, W. P.: Cytoplasmic streaming and microtubules in the coenocytic marine alga Caulerpa prolifera. J. Cell Sci. 2, 465–472 (1967).

    Google Scholar 

  • Sandborn, E. P., Koen, F., McNabb, J. D., Moore, G.: Cytoplasmic microtubules in mammalian cells. J. Ultrastruct. Res. 11, 123–138 (1964).

    Google Scholar 

  • Shelanski, M. L., Taylor, E. W.: Properties of a protein subunit of central pair and outerdoublet microtubules of sea urchin flagella. J. Cell Biol. 38, 304–315 (1968).

    Google Scholar 

  • Silver, M. D.: Cytoplasmic microtubules in rabbit platelets. Z. Zellforsch. 68, 474–480 (1965).

    Google Scholar 

  • Silviera, M., Porter, K. R.: The spermatozoids of flatworms and their microtubular systems. Protoplasma (Wien) 59, 240–265 (1964).

    Google Scholar 

  • Sitte, P.: Submikroskopische und molekulare Struktur der Zelle. Fortschr. Bot. 31, 18–44 (1969).

    Google Scholar 

  • Slautterback, D. B.: Cytoplasmic microtubules. I. Hydra. J. Cell Biol. 18, 367–388 (1963).

    Google Scholar 

  • Stang-Voss, C.: Zur Ultrastruktur der Blutzellen wirbelloser Tiere. I. Über die Haemocyten der Larve des Mehlkäfers Tenebrio molitor L. Z. Zellforsch. 103, 589–605 (1970).

    Google Scholar 

  • —: Zur Ultrastruktur der Blutzellen wirbelloser Tiere. III. Über die Haemocyten der Schnecke Lymnea stagnalis L. (Pulmonata). Z. Zellforsch. 107, 142–156 (1970).

    Google Scholar 

  • Tandler, B., Moriber, L. G.: Microtubular structures associated with the acrosome during spermiogenesis in the water-strider Gerris remigis (Say). J. Ultrastruct. Res. 14, 391–404 (1966).

    Google Scholar 

  • The, G. de: Cytoplasmic microtubules in different animal cells. J. Cell Biol. 23, 265–275 (1964).

    Google Scholar 

  • Wachtel, A. W., Szamier, R. B.: Special cutaneous receptor organs of fish. V. Electroreceptor inclusion bodies of Eigenmannia. J. Ultrastruct. Res. 27, 361–372 (1969).

    Google Scholar 

  • Wondrak, G.: Die Ultrastruktur der Zellen aus dem interstitiellen Bindegewebe von Arion rufus (L.), Pulmonata, Gastropoda. Z. Zellforsch. 95, 249–262 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Prof. Dr. med. W. Bargmann zum 65. Geburtstag gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stang-Voss, C., Staubesand, J. Mikrotubuläre Formationen in Zisternen des endoplasmatischen Retikulums. Z. Zellforsch. 115, 69–78 (1971). https://doi.org/10.1007/BF00330215

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00330215

Key-Words

Navigation