Skip to main content
Log in

Heterochromatin markers: Arrangement of obligatory heterochromatin, histone genes and multisite gene families in the interphase nucleus of D. melanogaster

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Localization, as detected by in situ hybridization, of major heterochromatic blocks in interphase nuclei of larval brain and imaginal discs is reported. We conclude that the position of heterochromatic regions in interphase nuclei is correlated with their respective position in metaphase chromosomes and hence, independent of sequence recognition. Furthermore, chromocentral associations of X-, Y- or autosomal-based heterochromatin are not formed in these cells. Homologues do align in close proximity, but heterochromatin plays no role in this arrangement. Heterochromatin, and probably nucleoli, establish their membrane links in situ, and have no prefixed recognition sites. The most intimate association between homologous repetitive sequences was found in the histone locus, but no tendency for clustering was found among loci of multisite euchromatic gene families.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avivi, L., Feldman, M.: Arrangement of chromosomes in the interphase nucleus of plants. Hum. Genet. 55, 281–295 (1980)

    Google Scholar 

  • Becker, H.J.: The influence of heterochromatin, inversion heterozygosity and somatic pairing on X-ray induced recombination in Drosophila melanogaster. Molec. Gen. Genet. 105, 203–218 (1969)

    Google Scholar 

  • Brosseau, G.E., Nicoletti, B., Gsell, E.H., Lindsley, D.L.: Production of altered Y chromosomes bearing specific sections of the X-chromosome in Drosophila. Genetics 46, 339–346 (1961)

    Google Scholar 

  • Brown, S.W., Nur, U.: Heterochromatic chromosomes in the coccids. Science 145, 130–136 (1964)

    Google Scholar 

  • Brutlag, D.: Molecular arrangement and evolution of heterochromatic DNA. Ann. Rev. Genet. 14, 121–144 (1980)

    Google Scholar 

  • Chernyshev, H.I., Baskirov, V.N., Leibovitch, B.A., Khesim, R.B.: Increase in the numbers of histone genes in case of their deficiency in Drosophila melanogaster. Molec. Gen. Genet. 178, 663–668 (1980)

    Google Scholar 

  • Comings, D.E.: Arrangement of chromatin in the nucleus. Hum. Genet. 53, 131–143 (1980)

    Google Scholar 

  • Cooper, K.W.: Cytogenetic analysis of major heterochromatic elements (especially Xh and Y) in Drosophila melanogaster and the theory of “heterochromatin”. Chromosoma (Berl.) 10, 535–588 (1959)

    Google Scholar 

  • Dawid, I.B., Lauth M., Wellauer, P.K.: Repetitive DNA elements related to the ribosomal insertion of Drosophila melanogaster. In: Mobilization and reassembly of genetic information (W.B. Scott, R. Werner and D.R. Joseph, eds.). Miami Winter Symp. 17, 217–234 (1980)

  • Hanna, A.: Localization and function of heterochromatin in Drosophila melanogaster Advanc. Genet. 4, 87–125 (1951)

    Google Scholar 

  • Hsu, T.S.: A possible function of constitutive heterochromatin: The body-guard hypothesis. Genetics 79, 137–150 (1975)

    Google Scholar 

  • John, B., Miklos, G.: Functional aspects of satellite DNA and heterochromatin. Int. Rev. Cytol. 58, 1–108 (1979)

    Google Scholar 

  • Kaufman, B.P.: Organization of the chromosome. I. Break distribution and chromosome recombination in Drosophila melanogaster. J. Exp. Zool. 102, 293–320 (1946)

    Google Scholar 

  • Korf, B.R., Gershey, E.L., Diacumakos, E.G.: Centromeres are arranged in clusters throughout the Muntjac cell cycle. Exp. Cell Res. 138, 393–395 (1982)

    Google Scholar 

  • Lifschytz, E.: Fine structure analysis and genetic organization at the base of the X chromosome in Drosophila melanogaster. Genetics 83, 457–467 (1978)

    Google Scholar 

  • Lifschytz, E., Hareven, D.: Heterochromatin markers: A search for heterochromatin specific middle repetitive sequences in Drosophila. Chromosoma (Berl.) 86, 429–442 (1982)

    Google Scholar 

  • Lifton, R.P., Goldberg, M.L., Karp, R.W., Hogness, D.S.: The organization of the histone genes in Drosophila melanogaster: Functional and evolutionary implications. Cold Spr. Harb. Symp. Quant. Biol. 42, 1047–1051 (1978)

    Google Scholar 

  • Moens, P.B., Church, K.: Centromere size, positions and movements in the interphase nucleus. Chromosoma (Berl.) 61, 41–48 (1977)

    Google Scholar 

  • Nicoletti, B., Londsley, D.L.: Translocation between the X and the Y chromosomes of Drosophila melanogaster. Genetics 45, 1705–1722 (1960)

    Google Scholar 

  • Pardue, M.L., Kedes, L.H., Weinberg, E.S., Birnstiel, M.L.: Localization of sequences coding for the histone messenger RNA in the chromosomes of Drosophila melanogaster. Chromosoma (Berl.) 63, 63–135 (1977)

    Google Scholar 

  • Roberts, P.A.: In support of the telomere concept. Genetics 80, 135–142 (1975)

    Google Scholar 

  • Rubin, G.M.: Isolation of a telomeric DNA sequence from Drosophila melanogaster. Cold Spr. Harb. Symp. Quant. Biol. 62, 1041–1046 (1978)

    Google Scholar 

  • Spradling, A.C., Rubin, G.M.: Drosophila genome organization: Conserved and dynamic aspects. Ann. Rev. Genet. 15, 219–264 (1981)

    Google Scholar 

  • White, M.J.D.: Animal cytology and evolution. Cambridge, Cambridge University Press 1948

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lifschytz, E., Hareven, D. Heterochromatin markers: Arrangement of obligatory heterochromatin, histone genes and multisite gene families in the interphase nucleus of D. melanogaster . Chromosoma 86, 443–455 (1982). https://doi.org/10.1007/BF00330120

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00330120

Keywords

Navigation