Skip to main content
Log in

Chromosome banding in Amphibia

VIII. An unusual XY/XX-sex chromosome system in Gastrotheca riobambae (Anura, Hylidae)

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The mitotic and meiotic chromosomes of the marsupial frog Gastrotheca riobambae were analysed with various banding techniques. The karyotype of this species is distinguished by considerable amounts of constitutive heterochromatin and unusual, heteromorphic XY sex chromosomes. The Y chromosome is considerably larger than the X chromosome and almost completely heterochromatic. The analysis of the banding patterns obtained with GC- and AT-base-pair-specific fluorochromes shows that the constitutive heterochromatin in the Y chromosome consists of at least three different structural categories. The only nucleolus organizer region (NOR) of the karyotype is localized in the short arm of the X chromosome. This causes a sex-specific difference in the number of NOR: female animals have two NORs in diploid cells, male animals one. No cytological indications were found for the inactivation of one of the two X chromosomes in the female cells. In male meiosis, the heteromorphic sex chromosomes form a characteristic sex-bivalent by pairing their telomeres in an end-to-end arrangement. The significance of the XY/XX sex chromosomes of G. riobambae for the study of X-linked genes in Amphibia, the evolution of sex chromosomes and their specific DNA sequences, and the significance of the meiotic process of sex chromosomes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barr HJ, Ellison JR (1972) Ectopic pairing of chromosome regions containing chemically similar DNA. Chromosoma 39:53–61

    Google Scholar 

  • Barr HJ, Esper H (1963) Nucleolar size in cells of Xenopus laevis in relation to nucleolar competition. Exp Cell Res 31:211–214

    Google Scholar 

  • Beçak W, Beçak ML, Nazareth HRS, Ohno S (1964) Close karyological kinship between the reptilian suborder Serpentes and the class Aves. Chromosoma 15:606–617

    Google Scholar 

  • Birnstiel, ML, Wallace H, Sirlin JL, Fischberg M (1966) Localization of the ribosomal DNA complements in the nucleolus organizer region of Xenopus laevis. In: (Vincent WS, Miller OL, eds) International symposium on the nucleolus. Its structure and function. NCI Monograph 23. Bethesda: Natl Cancer Inst, pp. 431–448

    Google Scholar 

  • Buys CHCM, Osinga J (1980) Abundance of protein-bound sulfhydril and disulfide groups at chromosomal nucleolus organizing regions — a cytochemical study on the selective silver staining of NORs. Chromosoma 77:1–11

    Google Scholar 

  • Chen TR, Ebeling AW (1968) Karyological evidence of female heterogamety in the mosquito fish Gambusia affinis (Baird and Girard). Copeia 1:70–75

    Google Scholar 

  • Chromosome atlas (1971–1975) Fish, amphibians, reptiles and birds (Benirschke K, Hsu TC, eds), folios Nos. R-17, R-31, R-37 and R-38. Springer, New York-Heidelberg-Berlin

    Google Scholar 

  • Duellman WE (1974) A systematic review of the marsupial frogs (Hylidae: Gastrotheca) of the Andes of Ecuador. Occas. Papers Mus. Nat. Hist. Univ. Kansas 22:1–27

    Google Scholar 

  • Duellman WE (1977) Liste der rezenten Amphibien und Reptilien. Hylidae, Centrolenidae, Pseudidae. In: (Mertens R, Hennig W, eds) Das Tierreich 95. Walter de Gruyter, Berlin-New York pp. 12–21

    Google Scholar 

  • Duellman WE, Fritts TH (1972) A taxonomic review of the southern Andean marsupial frogs (Hylidae: Gastrotheca). Occas. Papers Mus. Natl. Hist. Univ. Kansas 9:1–37

    Google Scholar 

  • Engel W, Zenzes MT, Schmid M (1977) Activation of mouse ribosomal RNA genes at the 2-cell stage. Hum. Genet. 38:57–63

    Google Scholar 

  • Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions in mammalian chromosomes using silver staining. Chromosoma 53:37–50

    Google Scholar 

  • Hayman DL, Rofe R (1977) Marsupial sex chromosomes. In: (Calaby JH, Tyndale-Biscoe CH, eds) Reproduction and evolution. Australian Academy of Science, Canberra pp. 69–79

    Google Scholar 

  • Hayman D, Sharp P (1981) Hoechst 33258 induced uncondensed sites in marsupial chromosomes. Chromosoma 83:249–262

    Google Scholar 

  • Hayman DL, Ashworth LK, Carrano AV (1982) The relative DNA contents of the eutherian and marsupial X chromosomes. Cytogenet. Cell Genet. 34:265–270

    Google Scholar 

  • Howell WM (1977) Visualization of ribosomal gene activity: silver stains proteins associated with rRNA transcribed from oocyte chromosomes. Chromosoma 62:361–367

    Google Scholar 

  • Hsu TC, Cooper JEK, Mace ML, Brinkley BR (1971) Arrangement of centromeres in mouse cells. Chromosoma 34:73–87

    Google Scholar 

  • Hsu TC, Spirito SE, Pardue ML (1975) Distribution of 18 + 28S ribosomal genes in mammalian genomes. Chromosoma 53:25–36

    Google Scholar 

  • Iturra P, Veloso A (1981) Evidence for heteromorphic sex chromosomes in male amphibians (Anura: Leptodactylidae). Cytogenet. Cell Genet. 31:108–110

    Google Scholar 

  • Jalal SM, Clark RW, Hsu TC, Pathak S (1974) Cytological differentiation of constitutive heterochromatin. Chromosoma 48:391–403

    Google Scholar 

  • Jones KW, Singh L (1981) Conserved repeated DNA sequences in vertebrate sex chromosomes. Hum. Genet. 58:46–53

    Google Scholar 

  • Kahn J (1962) The nucleolar organizer in the mitotic chromosome complement of Xenopus laevis. Quart. J. Micr. Sci. 103:407–409

    Google Scholar 

  • Kurnit DM (1979) Satellite DNA and heterochromatin variants: the case for unequal mitotic crossing over. Hum. Genet. 47:169–186

    Google Scholar 

  • Lin MS, Comings DE, Alfi OS (1977) Optical studies of the interaction of 4′-6-diamidino-2-phenylindole with DNA and metaphase chromosomes. Chromosoma 60:15–25

    Google Scholar 

  • Miller L, Knowland J (1970) Reduction of ribosomal RNA synthesis and ribosomal RNA genes in a mutant of Xenopus laevis which organizes only a partial nucleolus. II. The number of ribosomal RNA genes in animals of different nucleolar types. J. Molec. Biol. 53:329–338

    Google Scholar 

  • Miller DA, Dev VG, Tantravahi R, Miller OJ (1976a) Suppression of human nucleolus organizer activity in mouse-human somatic hybrid cells. Exp Cell Res 101:235–243

    Google Scholar 

  • Miller OJ, Miller DA, Dev VG, Tantravahi R, Croce CM (1976b) Expression of human and suppression of mouse nucleolus organizer activity in mouse-human somatic cell hybrids. Proc Natl Acad Sci 73:4531–4535

    Google Scholar 

  • Morescalchi A (1971) Comparative karyology of the Amphibia. Boll Zool 38:317–320

    Google Scholar 

  • Morescalchi A (1973) Amphibia. In: (Chiarelli AB, Capanna E, eds) Cytotaxonomy and vertebrate evolution. Academic Press, London-New York pp. 233–348

    Google Scholar 

  • Noble GK (1931) The biology of the Amphibia. McGraw-Hill Book New York

    Google Scholar 

  • Ohno S (1967) Sex chromosomes and sex-linked genes. Springer, Berlin-Heidelberg-New York

    Google Scholar 

  • Rae PMM, Franke WW (1972) The interphase distribution of satellite DNA-containing heterochromatin in mouse nuclei. Chromosome 39:443–456

    Google Scholar 

  • Ray-Chaudhuri SP, Singh L, Sharma T (1971) Evolution of sex chromosomes and formation of W chromatin in snakes. Chromosoma 33:239–251

    Google Scholar 

  • Scanlan BE, Maxson LR, Duellman WE (1980) Albumin evolution in marsupial frogs (Hylidae: Gastrotheca). Evolution 34:222–229

    Google Scholar 

  • Schempp W, Schmid M (1981) Chromosome banding in Amphibia. VI. BrdU-replication patterns in Anura and demonstration of XX/XY sex chromosomes in Rana esculenta. Chromosoma 83:697–710

    Google Scholar 

  • Schmid M (1978a) Chromosome banding in Amphibia. I. Constitutive heterochromatin and nucleolus organizer regions in Bufo and Hyla. Chromosoma 66:361–388

    Google Scholar 

  • Schmid M (1978b) Chromosome banding in Amphibia. II. Constitutive heterochromatin and nucleolus organizer regions in Ranidae, Microhylidae and Rhacophoridae. Chromosoma 68:131–148

    Google Scholar 

  • Schmid M (1980a) Chromosome banding in Amphibia. V. Highly differentiated ZW/ZZ sex chromosomes and exceptional genome size in Pyxicephalus adspersus (Anura, Ranidae). Chromosoma 80:69–96

    Google Scholar 

  • Schmid M (1980b) Chromosome banding in Amphibia. IV. Differentiation of GC- and AT-rich chromosome regions in Anura. Chromosoma 77:83–103

    Google Scholar 

  • Schmid M (1980c) Chromosome evolution in Amphibia. In: (Müller H, ed) Cytogenetics of vertebrates. Birkhäuser, Basel-Boston-Stuttgart pp. 4–27

    Google Scholar 

  • Schmid M (1983a) Chromosome banding in Amphibia. VII. Analysis of the structure and variability of NORs in Anura. Chromosoma 87:327–344

    Google Scholar 

  • Schmid M (1983b) Evolution of sex chromosomes and heterogametic systems in Amphibia. Differentiation 23 (Suppl.): S 13–22

    Google Scholar 

  • Schmid M, Vogel W, Krone W (1975) Attraction between centric heterochromatin in human chromosomes. Cytogenet. Cell Genet. 15:66–80

    Google Scholar 

  • Schmid M, Olert J, Klett C (1979) Chromosome banding in Amphibia. III. Sex chromosomes in Triturus. Chromosoma 71:29–55

    Google Scholar 

  • Schmid M, Löser C, Schmidtke J, Engel W (1982) Evolutionary conservation of a common pattern of activity of nucleolus organizers during spermatogenesis in vertebrates. Chromosoma 86:149–179

    Google Scholar 

  • Schnedl W, Breitenbach M, Mikelsaar A-V, Stranzinger G (1977) Mithramycin and DIPI: a pair of fluorochromes specific for GC- and AT-rich DNA respectively. Hum Genet 36:299–305

    Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324

    Google Scholar 

  • Schweizer D (1981) Counterstain-enhanced chromosome banding. Hum Genet 57:1–14

    Google Scholar 

  • Schweizer D, Ambros P, Andrle M (1978) Modification of DAPI banding on human chromosomes by prestaining with a DNA binding oligipeptide antibiotic, distamycin A. Exp Cell Res 111:327–332

    Google Scholar 

  • Sessions SK (1980) Evidence for a highly differentiated sex chromosome heteromorphism in the salamander Necturus maculosus (Rafinesque). Chromosoma 77:157–168

    Google Scholar 

  • Singh L, Purdom IF, Jones KW (1976) Satellite DNA and evolution of sex chromosomes. Chromosoma 59:43–62

    Google Scholar 

  • Singh L, Purdom IF, Jones KW (1979) Human chromosomes contain repeated sequences related to sex chromosome associated DNA in snakes, birds, and insects. Cytogenet Cell Genet 25:204

    Google Scholar 

  • Singh L, Purdom IF, Jones KW (1980) Sex chromosome associated satellite DNA: evolution and conservation. Chromosoma 79:137–157

    Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Google Scholar 

  • Thiébaud CH (1979a) The intra-nucleolar localization of amplified rDNA in Xenopus laevis oocytes. Chromosoma 73:29–36

    Google Scholar 

  • Thiébaud CH (1979b) Quantitative determination of amplified rDNA and its distribution during oogenesis in Xenopus laevis. Chromosoma 73:37–44

    Google Scholar 

  • Weisblum B (1973) Fluorescent probes of chromosomal DNA structure: three classes of acridines. Cold Spring Harb Symp Quant Biol 38:441–449

    Google Scholar 

  • Weisblum B, de Haseth PL (1972) Quinacrine, a chromosome stain specific for deoxyadenylate-deoxythymidylate-rich regions in DNA. Proc Natl Acad Sci 69:629–632

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, M., Haaf, T., Geile, B. et al. Chromosome banding in Amphibia. Chromosoma 88, 69–82 (1983). https://doi.org/10.1007/BF00329505

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00329505

Keywords

Navigation