Skip to main content
Log in

Mononuclear phagocytes and eicosanoids: Aspects of their synthesis and biological activities

  • Review Article
  • Published:
Blut Aims and scope Submit manuscript

Summary

Mononuclear phagocytes convert arachidonic acid and other unsaturated fatty acids from intracellular sources to a variety of oxygenated metabolites such as prostaglandins and leukotrienes which are secreted into the surrounding medium. Other oxidative products such as hydroxylinoleic acids are reacylated into cellular constituents. The underlying metabolic pathways are activated by numerous stimuli of exogenous or endogenous origin. Depending on the state of activation and cell differentiation, the organ of origin and the nature of the stimulus used, macrophages elaborate a distinct spectrum of oxidative arachidonic acid metabolites. The contribution of these metabolites to the proinflammatory properties of macrophages is twofold: As autocrine signals they modulate the synthesis of diverse macrophage products and they influence cellular functions of other cells such as T-lymphocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aderem AA, Cohen DS, Wright SD, Cohn ZA (1986) Bacterial lipopolysaccharides prime macrophages for enhanced release of arachidonic acid metabolites. J Exp Med 164: 165–179

    Google Scholar 

  2. Aderem AA, Cohn ZA (1988) Calcium ionophore synergizes with bacterial lipopolysaccharides in activating macrophage arachidonic acid metabolism. J Exp Med 167: 623–631

    Google Scholar 

  3. Ahorny D, Stein RL (1986) Kinetik mechanism of guinea pig neutrophil 5-lipoxygenase. J Biol Chem 261: 11512–11519

    Google Scholar 

  4. Atluru D, Goodwin JS (1984) Control of polyclonal immunoglobulin production from human lymphocytes by leukotrienes; leukotriene B4 induces an OKT8(+) radiosensitive suppressor cell from resting, human OKT8(−) T cells. J Clin Invest 74: 1444–1450

    Google Scholar 

  5. Atluru D, Goodwin JS (1986) Leukotriene B4 causes proliferation of interleukin 2 dependent T cells in the presence of suboptimal levels of interleukin 2. Cell Immunol 99: 444–452

    Google Scholar 

  6. Bachwich PR, Chensue SW, Larrick JW, Kunkel SL (1986) Tumor necrosis factor stimulates interleukin-1 and prostaglandin E2 production in resting macrophages. Biochem Biophys Res Comm 136: 94–101

    Google Scholar 

  7. Bachwich PR, Lynch III JP, Kunkel SE (1987) Arachidonic acid metabolism is altered in sarcoid alveolar macrophages. Clin Immunol Immunopathol 42: 27–37

    Google Scholar 

  8. Bhatnagar R, Schade U, Rietschel ETh, Decker K (1982) Involvement of prostaglandin E and adenosine 3′, 5′-monophosphate in lipopolysaccharide-stimulated collagenase release by rat Kupffer cells. Eur J Biochem 125: 125–130

    Google Scholar 

  9. Bigby TD, Holtzmann MJ (1987) Enhanced 5-lipoxygenase activity in lung macrophages compared to monocytes from normal subjects. J Immunol 138: 1546–1550

    Google Scholar 

  10. Bonney RJ, Wightman PD, Dahlgren ME, Davies P, Kuehl FA Jr (1978) Regulation of prostaglandin synthesis and of selective release of lysosomal hydrolases by mouse peritoneal macrophages. Biochem J 179: 433–442

    Google Scholar 

  11. Brandwein SR (1986) Regulation of interleukin 1 production by mouse peritoneal macrophages. J Biol Chem 261: 8624–8632

    Google Scholar 

  12. Bray MA, Gordon D, Morley J (1974) Role of prostaglandins in reaction of cellular immunity. Br J Pharmacol 52: 453

    Google Scholar 

  13. Broxmeyer HE, Moore MAS (1978) Communication between white cells and the abnormality of this in leukemia. Biochim Biophys Acta 516: 129–166

    Google Scholar 

  14. Brunda MJ, Herberman RB, Holden HT (1980) Inhibition of murine natural killer cell activity by prostaglandins. J Immunol 124: 2682–2687

    Google Scholar 

  15. Censini S, Bartalini M, Tagliabue A, Boraschi D (1989) Interleukin 1 stimulates production of LTC4 and other eicosanoids by macrophages. Lymphokine Res 8: 107–114

    Google Scholar 

  16. Chensue SW, Kunkel SL (1985) Induction of interleukin 1 release by leukotrienes. Fed Proc 44: 1270–1270

    Google Scholar 

  17. Chouaib S, Bertoglio JH (1988) Prostaglandins E as modulators of the immune response. Lymphokine Res 7: 237–245

    Google Scholar 

  18. Cochran FR, Roddick VL, Connor J, Thornburg JT, Waite M (1987) Regulation of arachidonic acid metabolism in resident and BCG-activated alveolar macrophages: role of lyso(bis)phosphatidic acid. J Immunol 138: 1877–1883

    Google Scholar 

  19. Cook JA, Halushka PV, Wise WC (1982) Modulation of macrophage arachidonic acid metabolism: potential role in the susceptibility of rats to endotoxic shock. Circ Shock 9: 605–617

    Google Scholar 

  20. Cook JA, Wise WC, Halushka PV (1981) Thromboxane A2 and prostacyclin production by lipopolysaccharide-stimulated peritoneal macrophages. J Reticuloendothel Soc 72: 389–391

    Google Scholar 

  21. Damon M, Chavis C, Crastes de Paulet A, Michel FB, Godard Ph (1987) Arachidonic acid metabolism in alveolar macrophages. A comparison of cells from healthy subjects, allergic asthmatics, and chronic bronchitis patients. Prostaglandins 34: 291–309

    Google Scholar 

  22. Davies P, Bonney RJ, Humes JL, Kuehl FA Jr (1980) The synthesis of arachidonic acid oxigenation products by various mononuclear phagocyte populations. In: van Furth R (ed) Mononuclear phagocytes. Nijhoff, The Hague, pp 1317–1345

    Google Scholar 

  23. Dayer JM, Beutler B, Cerami A (1985) Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J Exp Med 162: 2163–2168

    Google Scholar 

  24. Dinarello C (1989) Interleukin 1 and its biologically related cytokines. Adv Immunol 44: 153–205

    Google Scholar 

  25. Dinarello CA, Bishai J, Rosenwasser LJ, Coceani F (1984) The influence of lipoxygenase inhibitors on the in vitro production of human leucocytic pyrogen and lymphocyte activating factor (interleukin 1). Int J Immunopharmacol 6: 43–50

    Google Scholar 

  26. Dinarello CA, Marnoy SO, Rosenwasser LJ (1989) Role of arachidonate metabolism in the immunoregulatory function of human leukocytic pyrogen/lymphocyte-activating factor/interleukin 1. J Immunol 130: 890–895

    Google Scholar 

  27. Drapier JC, Petit JF (1986) Development of antitumor activity in LPS-stimulated mouse granuloma macrophages. Regulation by eicosanoids. Inflammation 10: 195–203

    Google Scholar 

  28. Drapier JP, Petit JF (1984) Involvement of prostaglandins in LPS-mediated regulation of plasminogen activator synthesis by inflammatory macrophages. Int J Immunopharmacol 6: 345–350

    Google Scholar 

  29. Drysdale BE, Shin MS (1981) Activation of macrophages for tumor cell cytotoxicity: identification of indomethacin sensitive and insensitive pathways. J Immunol 127: 760–765

    Google Scholar 

  30. Du JT, Foegh M, Maddox YT, Ramwell PW (1983) Human peritoneal macrophages synthesize leukotrienes B4 and C4. Biochim Biophys Acta 753: 159–163

    Google Scholar 

  31. Farrar WL, Humes JL (1985) The role of arachidonic acid metabolism in the activities of interleukin 1 and 2. J Immunol 135: 1153–1159

    Google Scholar 

  32. Fels AOS, Cohn ZA (1986) The alveolar macrophage. J Appl Physiol 60: 353–369

    Google Scholar 

  33. Fels AOS, Pawlowski NA, Cramer EB, King TKC, Cohn ZA, Scott WA (1982) Human alveolar macrophages produce leukotriene B4. Proc Natl Acad Sci USA 79: 7866–7870

    Google Scholar 

  34. Ferreri NR, Howland WC, Spiegelberg HL (1986) Release of leukotrienes C4 and B4 and prostaglandin E from human monocytes stimulated with aggregated IgG, IgA and IgE. J Immunol 136: 4188–4193

    Google Scholar 

  35. Foegh M, Maddox YT, Winchester J, Rakowski T, Schreiner G, Ramwell PW (1983) Prostacyclin and thromboxane release from humanperitoneal macrophages. In: Samuelsson B, Paoletti R, Ramwell PW (eds) Adv Prostag Thromb Leuk Res, vol. 12. Raven Press, New York, pp 45–49

    Google Scholar 

  36. Fulford DE, Rutherford RB (1987) Cell-bound C3b stimulates human monocyte release of prostaglandin E and thromboxane B2. J Leuk Biol 41: 363–366

    Google Scholar 

  37. Gemsa D, Steggemann L, Menzel J, Till G (1975) Release of cyclic AMP of macrophages by stimulation with prostaglandins. J Immunol 114: 1422–1424

    Google Scholar 

  38. Glode LM, Mergenhagen SE, Rosenstreich DL (1976) Significant contribution of spleen cells in mediating the lethal effects of endotoxin in vivo. Infect Immun 14: 626–630

    Google Scholar 

  39. Goetze AM, Fayer L, Bouska J, Bornemmeier D, Carter GW (1985) Prification of a mammalian 5-lipoxygenase from rat basophilic leukemia cells. Prostaglandins 29: 690–701

    Google Scholar 

  40. Goetzl EJ (1981) Selective feedback inhibition of the 5-lipoxygenation of arachidonic acid in human T-lymphocytes. Biochem Biophys Res Common 101: 344–350

    Google Scholar 

  41. Gonzales-Crussi F, Hsueh W, Lamb R (1982) Decreased phospholipase A2 activity and prostaglandin biosynthesis in bacillus Calmette-Guerin activated alveolar macrophages. Fed Proc 41: 449–449

    Google Scholar 

  42. Goodwin JS (1986) Regulation of T-cell activation by leukotriene B4. Immunol Res 5: 233–248

    Google Scholar 

  43. Goodwin JS, Atluru D, Sierakowski S (1986) Mechanism of action of glucocorticosteroids. J Clin Invest 77: 1244–1250

    Google Scholar 

  44. Goppelt-Struebe M, Koerner CF, Hausmann G, Gemsa D, Resch K (1986) Control of prostanoid synthesis: role of reincorporation of released precursor fatty acids. Prostaglandins 32: 373–385

    Google Scholar 

  45. Gualde N, Rigaud M, Goodwin JS (1985) Induction of suppressor cells from peripheral blood T cells by 15-hydroperoxyeicosatetraenoic acid (15-HPETE). Eur J Immunol 135: 3424–3429

    Google Scholar 

  46. Hartung HP, Bitter-Suermann D (1983) Induction of thromboxane release from macrophages by anaphylactic peptide C3a of complement and synthetic hexapeptide C3a. J Immunol 130: 1345–1349

    Google Scholar 

  47. Hartung HP, Hadding U, Bitter-Suermann D, Gemsa D (1983) Stimulation of prostaglandin E and thromboxane synthesis in macrophages by purified C3b. J Immunol 130: 2861–2865

    Google Scholar 

  48. Henney CH, Bourne HR, Lichtenstein LM (1972) The role of cyclic 3′, 5′ adenosine monophosphate in the specific cytolytic activity of lymphocytes. J Immunol 108: 1526–1534

    Google Scholar 

  49. Hsueh W (1979) Prostaglandin biosynthesis in pulmonary macrophages. Am J Pathol 97: 137–147

    Google Scholar 

  50. Hsueh W, Sun F (1982) Leukotriene B4 biosynthesis by alveolar macrophages. Biochem Biophys Res Commun 106: 1085–1091

    Google Scholar 

  51. Hume DH, Gordon S (1983) Mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80. J Exp Med 157: 1704–1709

    Google Scholar 

  52. Humes JL, Bonney RJ, Pelus L, Dahlgren ME, Sadowski S, Kuehl FA Jr (1977) Macrophages synthesize and release prostaglandins in response to inflammatory stimuli. Nature 269: 149–151

    Google Scholar 

  53. Humes JL, Burger S, Galavage M (1980) The diminished production of arachidonic acid oxygenated products by elicited mouse peritoneal macrophages: possible mechanism. J Immunol 124: 2110–2116

    Google Scholar 

  54. Humes JL, Sadowski S, Galavage M (1982) Evidence for two sources of arachidonic acid for oxidative metabolism by mouse peritoneal macrophages. J Biol Chem 257: 1591–1594

    Google Scholar 

  55. Hänsch GM, Seitz M, Martinotti G, Betz M, Rauterberg EW, Gemsa D (1984) Macrophages release arachidonic acid, prostaglandin E2 and thromboxane in response to late complement components. J Immunol 133: 2145–2150

    Google Scholar 

  56. Imagawa DK, Osifchin NE, Ramm LE et al. (1986) Release of arachidonic acid and formation oxygenated derivatives after complement attack of macrophages: role of channel formation. J Immunol 136: 4637–4643

    Google Scholar 

  57. Irvine RF (1982) How is the level of free arachidonic acid controlled in mammalian cells. Biochem J 204: 3–16

    Google Scholar 

  58. Johnston CA, Greisman SE (1985) Mechanism of endotoxin tolerance. In: Hinshaw LB (ed) Handbook of endotoxin, vol 2: pathophysiology of endotoxin. Elsevier, Amsterdam, New York, Oxford, pp 359–391

    Google Scholar 

  59. Katakami Y, Nakao Y, Koizumi T, Katakami N, Ogawa R, Fujita T (1988) Regulation of tumor necrosis factor production by mouse peritoneal macrophages: the role of cellular cyclic AMP. Immunology 64: 719–724

    Google Scholar 

  60. Kelly JP, Johnson MC, Parker CW (1979) Effect of inhibitors of arachidonic acid metabolism on mitogenesis in human lymphocytes: possible role of thromboxanes and products of the lipoxygenase pathway. J Immunol 122: 1563–1571

    Google Scholar 

  61. Knudsen PJ, Dinarello CA, Strom TB (1986) Prostaglandins post-transcriptionally inhibit monocyte expression of interleukin 1 activity by increasing intracellular cyclic adenosine monophosphate. J Immunol 137: 3189–3194

    Google Scholar 

  62. Kröner EE, Peskar BA, Fischer H, Ferber E (1981) Control of arachidonic acid accumulation in bone marrow-derived macrophages by acyltransferases. J Biol Chem 256: 3690–3697

    Google Scholar 

  63. Kunkel SL, Chensue SW (1985) Arachidonic acid metabolites regulate interleukin 1 production. Biochem Biophys Res Commun 128: 892–897

    Google Scholar 

  64. Kunkel SL, Chensue SW, Phan SM (1986) Prostaglandins as endogenous mediators of interleukin 1 production. J Immunol 136: 186–192

    Google Scholar 

  65. Kunkel SL, Spengler M, May MA, Spengler R, Larrick J, Remick D (1988) Prostaglandin E2 regulates macrophage-derived tumor necrosis factor gene expression. J Biol Chem 263: 5380–5384

    Google Scholar 

  66. Kunkel SL, Wiggins RC, Chensue SW, Larrick J (1986) Regulation of macrophage tumor necrosis factor production by prostaglandin E2. Biochem Biophys Res Commun 137: 404–410

    Google Scholar 

  67. Kurland JI, Bockman RJ (1978) Prostaglandin E production by human blood monocytes and mouse peritoneal macrophages. J Exp Med 147: 952–957

    Google Scholar 

  68. Lee SH, Starkey PM, Gordon S (1985) Quantitative analysis of total macrophage content in adult mouse tissues. J Exp Med 161: 475–489

    Google Scholar 

  69. Lee TH, Austen KF (1986) Arachidonic acid metabolism by the 5-lipoxygenase pathway and the effects of alternative dietary fatty acids. In: Dixon F (ed) Adv Immunol, vol. 39. Academic Press, Orlando, pp 145–175

    Google Scholar 

  70. Lüderitz T, Schade U, Rietschel ET (1986) Formation and metabolism of leukotriene C4 in macrophages exposed to bacterial lipopolysaccharide. Eur J Biochem 155: 377–382

    Google Scholar 

  71. Mathison JC, Ulevitch RJ (1983) Mediators involved in the expression of endotoxic activity. Surv Synth Path Res 1: 34–48

    Google Scholar 

  72. McGuire JC, Richard KA, Sun FF, Tracey DE (1985) Production of prostaglandin D2 by murine macrophage cell lines. Prostaglandins 30: 949–967

    Google Scholar 

  73. Moncada S, Vane JR (1979) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev 30: 293–331

    Google Scholar 

  74. Morlund B, Kaplan B (1977) Macrophage activation in vivo and in vitro. Exp Cell Res 108: 279–288

    Google Scholar 

  75. Moscat J, Herrero C, Garcia-Barreno P, Municio AM (1986) Phospholipase C-Diglyceride lipase is a major pathway for arachidonic acid release in macrophages. Biochem Biophys Res Commun 141: 367–373

    Google Scholar 

  76. Nathan CF (1987) Secretory products of macrophages. J Clin Invest 79: 319–326

    Google Scholar 

  77. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith (1986) Arachidonic acid metabolism. In: Richardson CC (ed) Ann Rev Biochem, vol 55. Annual Reviews, Palo Alto, pp 69–102

    Google Scholar 

  78. Ogle CK, Ogle JD, Johnson C, Keynton L, Alexander JW (1988) The production of C3, PGE2 and thromboxane by splenic, alveolar, and peritoneal guinea pig macrophages. Prostaglandins 36: 279–289

    Google Scholar 

  79. Parker CW (1987) Lipid mediators produced through the lipoxygenase pathway. In: Paul WE, Fathman CG, Metzger H (eds) Ann Rev Immunol, vol 5. Annual Reviews, Palo Alto, pp 65–84

    Google Scholar 

  80. Pawlowski NA, Kaplan G, Hamill HA, Cohn ZA, Scott WA (1983) Arachidonic acid metabolism by human monocytes. J Exp Med 158: 393–412

    Google Scholar 

  81. Payan DG, Goetzl EJ (1983) Specific suppression of human T lymphocyte function by leukotriene B4. J Immunol 131: 551–553

    Google Scholar 

  82. Pison U, Kunau WH, Damerau B, König W (1983) Induction of leukotriene formation by the anyphylatoxins C3a and C5a. Immunobiology 164: 265–265

    Google Scholar 

  83. Plescia OJ, Smith AJ, Grinwich K (1989) Subversion of immune system by tumor cells and role of prostaglandins. Proc Natl Acad Sci USA 72: 1848–1851

    Google Scholar 

  84. Poubelle PE, Borgeat P, Rola-Plesczcynski M (1987) Assessment of leukotriene B4 synthesis in human lymphocytes by using high performance liquid chromatography and radioimmunoassay methods. J Immunol 139: 1273–1277

    Google Scholar 

  85. Renz H, Gong JH, Schmidt A, Nain M, Gemsa D (1988) Release of tumor necrosis factor-α from macrophages. Enhancement and suppression are dose-dependently regulated by prostaglandin E2 and cyclic nucleotides. J Immunol 141: 2388–2393

    Google Scholar 

  86. Rietschel ET, Schade U, Lüderitz O, Fischer H, Peskar BA (1980) Prostaglandins in endotoxicosis. In: Schlessinger D (ed) Microbiology 1980. Am Soc Microbiol, Washington DC, pp 66–72

    Google Scholar 

  87. Rigaud M, Durand J, Breton JC (1979) Transformation of arachidonic acid into 12-hydroxy-5,8,10,14-eicosatetraenoic acid by mouse peritoneal macrophages. Biochim Biophys Acta 573: 408–412

    Google Scholar 

  88. Rola-Plesczcynski M (1985) Differential effects of leukotriene B4 on T4+ and T8+ lymphocyte phenotype and immunoregulatory functions. J Immunol 135: 1357–1360

    Google Scholar 

  89. Rola-Plesczcynski M, Borgeat P, Sirois P (1982) LTB4 induces human suppressor lymphocytes. Biochem Biophys Res Commun 108: 1531–1537

    Google Scholar 

  90. Rola-Plesczcynski M, Lemaire I (1985) Leukotrienes augment interleukin 1 production by human monocytes. J Immunol 135: 3985–3961

    Google Scholar 

  91. Rouzer CA, Samuelsson B (1985) On the nature of the 5-lipoxygenase reaction in human leukocytes: enzyme purification and requirement for multiple stimulatory factors. Proc Natl Acad Sci USA 82: 6040–6044

    Google Scholar 

  92. Rouzer CA, Scott WA, Cohn ZA, Blackburn P, Manning JM (1980) Mouse peritoneal macrophages release leukotriene C in response to a phagocytic stimulus. Proc Natl Acad Sci USA 77: 4928–4933

    Google Scholar 

  93. Rouzer CA, Scott WA, Hamill AL, Cohn ZA (1982) Synthesis of leukotriene C and other arachidonic acid metabolites by mouse pulmonary macrophages. J Exp Med 155: 720–733

    Google Scholar 

  94. Rutherford B, Schenkein HA (1983) C3 cleavage products stimulate release of prostaglandins by mononuclear phagocytes in vitro. J Immunol 130: 874–877

    Google Scholar 

  95. Salari S, DeVoe IW, Powell WS (1982) Inhibition of LTB4 synthesis in human polymorphonuclear leukocytes after exposure to meningococcal lipopolysaccharide. Biochem Biophys Res Commun 104: 1517–1524

    Google Scholar 

  96. Samuelsson B (1983) From studies of biochemical mechanism to novel biological mediators: prostaglandin endoperoxides, thromboxanes, and leukotrienes. Biosci Rep 3: 791–813

    Google Scholar 

  97. Samuelsson B (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220: 568–575

    Google Scholar 

  98. Scales WE, Chensue SW, Otterness I, Kunkel SL (1989) Regulation of monokine gene expression: prostaglandin E2 suppresses tumor necrosis factor but not interleukin la or β-mRNA and cell-associated bioactivity. J Leuk Biol 45: 416–421

    Google Scholar 

  99. Schade U, Rietschel ET (1980) Differences in prostaglandin production of peritoneal macrophages from normal, endotoxin tolerant and hyperreactive mice. In: Eaker D, Wadström T (eds) natural-toxins. Pergamon Press, Oxford, New York, pp 271–277

    Google Scholar 

  100. Schade U, Rietschel ET (1982) The role of prostaglandins in endotoxic activities. Klin Wochenschr 60: 743–745

    Google Scholar 

  101. Schade UF (1986) Involvement of lipoxygenase in the activation of mouse peritoneal macrophages by endotoxin. Biochem Biophys Res Commun 138: 842–849

    Google Scholar 

  102. Schade UF (1987) The effect of endotoxin on the lipoxygenase-mediated conversion of exogenous and endogenous arachidonic acid in mouse peritoneal macrophages. Prostaglandins 34: 385–400

    Google Scholar 

  103. Schade UF, Burmeister I, Engel R (1987) Increased 13-hydroxyoctadecadienoic acid content in lipopolysaccharide stimulated macrophages. Biochem Biophys Res Commun 147: 695–700

    Google Scholar 

  104. Schade UF, Ernst M, Reinke M, Wolter DT (1989) Lipoxygenase inhibitors suppress formation of tumor necrosis factor in vitro and in vivo. Biochem Biophys Res Commun 159: 748–754

    Google Scholar 

  105. Schade UF, Burmeister I, Engel R, Lode H, Kozka I (1989) The role of 13-hydroxylinoleic acid in the activation of macrophages by lipopolysaccharide. In: Nakano M (ed) Proceedings of the 2nd Japanese international endotoxin meeting (in press)

  106. Schade UF, Moll H, Rietschel ET (1987) Metabolism of exogenous arachidonic acid by mouse peritoneal macrophages. Prostaglandins 34: 401–412

    Google Scholar 

  107. Scott WA, Pawlowski NA, Andreach M, Cohn ZA (1982) Resting macrophages produce distinct metabolites from exogenous arachidonic acid. J Exp Med 155: 535–547

    Google Scholar 

  108. Scott WA, Pawlowski NA, Murray HW, Andreach M, Zrike J, Cohn ZA (1982) Regulation of arachidonic acid metabolism by macrophage activation. J Exp Med 155: 1148–1160

    Google Scholar 

  109. Sitrin RG, Kaltreider HB, Goldyne ME (1984) Prostaglandin E is required for the augmentation of procoagulant activity of LPS-stimulated rabbit alveolar macrophages. J Immunol 132: 867–871

    Google Scholar 

  110. Snyder DS, Beller DI, Unanue ER (1982) Prostaglandins modulate macrophage Ia expression. Nature 299: 163–165

    Google Scholar 

  111. Taffet SM, Russel SW (1981) Macrophage mediated tumor cell killing: regulation of expression of cytolytic activity. J Immunol 126: 424–427

    Google Scholar 

  112. Tannenbaum CS, Hamilton TA (1989) Lipopolysaccharide-induced gene expression in murine peritoneal macrophages is selectively suppressed by agents that elevate intracellular cAMP. J Immunol 142: 1274–1280

    Google Scholar 

  113. Tripp CS, Leahy KM, Needleman P (1985) Thromboxane synthase is preferentially conserved in activated mouse peritoneal macrophages. J Clin Invest 76: 898–901

    Google Scholar 

  114. Tripp CS, Mahoney M, Needleman P (1985) Calcium ionophore enables soluble agonists to stimulate macrophage 5-lipoxygenase. J Biol Chem 260: 5895–5898

    Google Scholar 

  115. Tripp CS, Unanue ER, Needleman P (1986) Monocyte migration explains the changes in arachidonate metabolism during the immune response. Proc Natl Acad Sci USA 83: 9655–9659

    Google Scholar 

  116. Tripp CS, Wyche A, Unanue ER, Needleman P (1986) The functional significance of the regulation of macrophage Ia expression by endogenous arachidonate metabolites in vitro. J J Immunol 137: 3915–3920

    Google Scholar 

  117. Van den Bosch H (1980) Intracellular phospholipases A. Biochim Biophys Acta 604: 191–246

    Google Scholar 

  118. Wahl LM, McCarthy JB, Olsen CE, Wahl SM, Sandberg AL, Mergenhagen SE (1980) Regulation of macrophage collagenase by prostaglandins and cyclic adenosine 3′,5′-monophosphate. In: Schlessinger D (ed) Microbiology-1980. Am Soc Microbiol, Washington DC, pp 73–76

    Google Scholar 

  119. Wahl LM, Olsen CE, Sandberg AL, Mergenhagen SE (1977) Prostaglandin regulation of macrophage collagenase production. Proc Natl Acad Sci USA 74: 4955–4958

    Google Scholar 

  120. Wahl SM, Wahl LM, McCarthy JB, Chedid L (1979) Macrophage activation by mycobacterial water soluble compounds and synthetic muramyl dipeptide. J Immunol 122: 2226–2131

    Google Scholar 

  121. Weidemann MJ, Peskar BA, Wrogemann K, Rietschel ETh, Staudinger H, Fischer H (1978) Prostaglandin and thromboxane synthesis in a pure macrophage population and the inhibition by E-type prostaglandins of chemoluminescence. FEBS Lett 89: 136–140

    Google Scholar 

  122. Wightman PD, Dahlgren ME, Hall JC, Davies P, Bonney RJ (1981) Identification and characterization of a phospholipase C activity in mouse peritoneal macrophages. Biochem J 197: 533–526

    Google Scholar 

  123. Wightman PD, Humes JL, Davies P, Bonney RJ (1981) Identification and characterization of two phospholipase A2 activities in resident mouse peritoneal macrophages. Biochem J 195: 427–433

    Google Scholar 

  124. Williams JD, Robin JL, Lewis RA, Lee TH, Austen KF (1986) Generation of leukotrienes by human monocytes pretreated with cytocalasin B and stimulated with formylmethionyl-leucyl-phenylalanine. J Immunol 136: 642–648

    Google Scholar 

  125. Zurier RB, Weissmann G, Hoffstein S, Kammerman S, Tai HH (1989) Mechanism of lysosomal enzyme release from human leukocytes. J Clin Invest 53: 297–309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schade, U.F., Burmeister, I., Elekes, E. et al. Mononuclear phagocytes and eicosanoids: Aspects of their synthesis and biological activities. Blut 59, 475–485 (1989). https://doi.org/10.1007/BF00329492

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00329492

Key words

Navigation