Skip to main content
Log in

Kinetic impairment of restrictive streptomycin-resistant ribosomes

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Comparisons in vivo and in vitro of wild-type and otherwise isogenic bacteria with five different mutant alleles of the gene (rpsL) specifying ribosomal protein S12, all resistant to high levels of streptomycin, show that the streptomycin-resistant (Smr) phenotype can be subdivided into major groups: restrictive and non-restrictive. The restrictive bacteria have a characteristically lower frequency of nonsense suppression in vivo, and are also slower than the wild type in their rate of protein synthesis. Non-restrictive Smr bacteria on the other hand do not differ significantly from the wild type either in nonsense suppression frequencies or in the rate of translation.

A complementary pattern is seen in vitro, where ribosomes from the restrictive Smr bacteria translate poly(U) with a significantly lower missense error frequency than wild-type ribosomes, and also show an increased Michaelis constant (K M) with respect to their substrate, i.e. ternary complexes. Both effects are correlated with the more aggressive proofreading function that is characteristic of these restrictive ribosomes. In contrast, ribosomes isolated from the non-restrictive Smr bacteria do not show any major difference in either proofreading or missense error in vitro when compared to the wild type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson DI, Kurland CG (1983) Ram ribosomes are defective proofreaders. Mol Gen Genet 191:378–381

    Google Scholar 

  • Andersson DI, Bohman K, Isaksson LA, Kurland CG (1982) Translation rates and misreading characteristics of rpsD mutants in Escherichia coli. Mol Gen Genet 187:467–472

    Google Scholar 

  • Arai KJ, Kawakita M, Kaziro Y (1972) Studies on polypeptide elongation factors from Escherichia coli. J Biol Chem 247:7029–7037

    Google Scholar 

  • Birge EA, Kurland CG (1969) Altered ribosomal protein in streptomycin dependent Escherichia coli. Science 166:1282–1284

    Google Scholar 

  • Bouadloun F, Donner D, Kurland CG (1983) Codon-specific missense errors in vivo. EMBO J 2:1351–1356

    Google Scholar 

  • Breckenridge L, Gorini L (1970) Genetic analysis of streptomycin resistance in Escherichia coli. Genetics 65:9–25

    Google Scholar 

  • Couturier M, Desmet L, Thomas R (1964) High pleiotropy of streptomycin mutations in Escherichia coli. Biochem Biophys Res Commun 16:244–248

    Google Scholar 

  • Ehrenberg M, Kurland CG (1984) Costs of accuracy determined by a maximal growth rate constraint. Q Rev Biophys 17:45–82

    Google Scholar 

  • Fersht A (1977) Enzyme structure and mechanism. WH Freeman and Co, Reading, San Francisco

    Google Scholar 

  • Flaks JG, Cox EC, White JR (1962) Inhibition of polypeptide synthesis by streptomycin. Biochem Biophys Res Commun 7:385–389

    Google Scholar 

  • Funatsu G, Wittmann HG (1972) Ribosomal proteins XXXIII. Location of aminoacid replacements in protein S12 isolated from Escherichia coli mutants resistant to streptomycin. J Mol Biol 68:547–550

    Google Scholar 

  • Galas DJ, Branscomb EW (1976) Ribosome slowed by mutation to streptomycin resistance. Nature 262:617–619

    Google Scholar 

  • Gorini L (1971) Ribosomal discrimination of tRNAs. Nature New Biol 234:261–264

    Google Scholar 

  • Gorini L, Jacoby AG, Breckenridge L (1966) Ribosomal ambiguity. Cold Spring Harbor Symp Quant Biol 31:657–664

    Google Scholar 

  • Hopfield JJ (1974) Kinetic proofreading: a new mechnism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci USA 71:4135–4139

    Google Scholar 

  • Isaksson LA, Sköld SE, Skjöldebrand J, Takata R (1977) A procedure for isolation of spontaneous mutants with temperature sensitive synthesis of RNA and/or protein. Mol Gen Genet 156:233–237

    Google Scholar 

  • Jelenc PC (1980) Rapid purification of highly active ribosomes from Escherichia coli. Anal Biochem 105:369–374

    Google Scholar 

  • Jelenc PC, Kurland CG (1979) Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc Natl Acad Sci USA 76:3174–3178

    Google Scholar 

  • Jelenc PC, Kurland CG (1984) Multiple effects of kanamycin on translational accuracy. Mol Gen Genet 194:195–199

    Google Scholar 

  • Kalnins A, Otto K, Rüther U, Müller-Hill B (1983) Sequence of the lacZ gene of Escherichia coli. EMBO J 2:593–597

    Google Scholar 

  • Kurland CG, Ehrenberg M (1984) Optimization of translational accuracy. Prog Nucl Acid Res Mol Biol (in press)

  • Lebermann R, Antonsson B, Giovanelli R, Guariguata R, Schumann R, Wittinghofer A (1980) A simplified procedure for the isolation of bacterial polypeptide elongation factor EF-Tu. Anal Biochem 104:29–36

    Google Scholar 

  • Lederberg EM, Cavalli-Sforza LL, Lederberg J (1964) Interaction of streptomycin and a suppressor for galactose fermentation in E. coli K-12. Proc Natl Acad Sci USA 51:678–681

    Google Scholar 

  • Miller CP, Bohnhoff M (1947) Two streptomycin-resistant variants of meningococcus. J Bacteriol 54:467–475

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Miller JH, Coulondre C, Farabaugh PJ (1978) Correlation of nonsense sites in the lacI gene with specific codons in the nucleotide sequence. Nature 274:770–775

    Google Scholar 

  • Morris JG (1974) A biologist's physical chemistry. Edward Arnold Ltd, London, p 287

    Google Scholar 

  • Müller-Hill B, Kania J (1974) Lac repressor can be fused to β-galactosidase. Nature 249:561–563

    Google Scholar 

  • Newcombe HB, Hawirko R (1949) Spontaneous mutation to streptomycin resistance and dependence in Escherichia coli. J Bacteriol 56:565–571

    Google Scholar 

  • Ninio J (1974) A semi-quantiative treatment of missense and nonsense suppression in the strA and ram ribosomal mutants of Escherichia coli. Evaluation of some molecular parameters of translation in vivo. J Mol Biol 84:297–313

    Google Scholar 

  • Ninio J (1975) Kinetic amplification of enzyme discrimination. Biochimie 57:587–595

    Google Scholar 

  • Olsson M, Isaksson LA (1979) Analysis of rpsD mutations in Escherichia coli I Comparision of mutants with various alterations in ribosomal protein S4. Mol Gen Genet 169:251–257

    Google Scholar 

  • Ozaki M, Mizushima S, Nomura M (1969) Identification and functional characterization of the protein controlled by the streptomycin resistant locus in E. coli. Nature 222:333–339

    Google Scholar 

  • Pedersen S (1984) In Escherichia coli individual genes are translated with different rates in vivo. Alfred Benzon Symposium 19, Munksgaard, Copenhagen (in press)

    Google Scholar 

  • Piepersberg W, Noseda V, Böck A (1979) Bacterial ribosomes with two ambiquity mutations: Effects on translational fidelity, on the response to aminoglycosides and on the rate of protein synthesis. Mol Gen Genet 171:23–34

    Google Scholar 

  • Ruusala T, Ehrenberg M, Kurland CG (1982a) Catalytic effects of elongation factor Ts on polypeptide synthesis. EMBO J 1:75–78

    Google Scholar 

  • Ruusala T, Ehrenberg M, Kurland CG (1982b) Is there proofreading during polypeptide synthesis? EMBO J 1:741–745

    Google Scholar 

  • Ruusala T, Andersson DI, Ehrenberg M, Kurland CG (1984) Hyper-accurate ribosomes inhibit growth. EMBO J (In press)

  • Schleif R, Hess W, Finkelstein S, Ellis D (1973) Induction kinetics of the L-arabinose operon of Escherichia coli. J Bacteriol 115:9–14

    Google Scholar 

  • Speyer JF, Lengyel P, Basilio C (1962) Ribosomal localization of streptomycin sensitivity. Proc Natl Acad Sci USA 48:684–686

    Google Scholar 

  • Spotts CR, Stanier RY (1961) Mechanism of streptomycin action on bacteria: A unitary hypothesis. Nature 192:633–637

    Google Scholar 

  • Thompson RC, Dix DB, Gerson RB, Karim AM (1981) Effect of Mg2+ concentration, polyamines, streptomycin, and mutations in ribosomal proteins on the accuracy of the two-step selection of aminoacyl-tRNAs in protein biosynthesis. J Biol Chem 256:6676–6681

    Google Scholar 

  • Wagner EGH, Kurland CG (1980) Escherichia coli elongation factor G blocks stringent factor. Biochemistry 19:1234–1240

    Google Scholar 

  • Wagner EGH, Jelenc PC, Ehrenberg M, Kurland CG (1982) Rate of elongation of polyphenylalanine in vitro. Eur J Biochem 122:193–197

    Google Scholar 

  • Yates JL (1979) Role of ribosomal protein S12 in discrimination of aminoacyl-tRNA. J Biol Chem 254:11550–11554

    Google Scholar 

  • Zengel JM, Young R, Dennis PP, Nomura M (1977) Role of ribosomal protein S12 in peptide chain elongation: analysis of pleiotrophic, streptomycin-resistant mutants of Escherichia coli. J Bacteriol 129:1326–1329

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Böck

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohman, K., Ruusala, T., Jelenc, P.C. et al. Kinetic impairment of restrictive streptomycin-resistant ribosomes. Molec Gen Genet 198, 90–99 (1984). https://doi.org/10.1007/BF00328706

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00328706

Keywords

Navigation