Skip to main content
Log in

Cloning and nucleotide sequence of the gene for an archaebacterial protein synthesis elongation factor Tu

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A restriction fragment enrichment procedure was devised for the identification and cloning of the gene for protein synthesis elongation factor Tu (EF-Tu) from Methanococcus vannielii, employing hybridisation with an internal tufB gene probe from Escherichia coli. Methanococcus contains a single tuf gene on its chromosome; it is expressed in E. coli and it codes for a polypeptide of 46.5 kDa. The overall architecture of the protein bears a striking resemblance to that of eukaryotic elongation factor 1α (EF-1α). The close similarity to EF-1α is supported by the sequence homology values which are in the range of 34% to 35% with eubacterial, plastid and mitochondrial EF-Tu sequences and as high as 52% to 54% with those from eukaryotic EF-1α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An G, Friesen JD (1980) Nucleotide sequence of tufB and four nearby tRNA structural genes of Escherichia coli. Gene 12:33–39

    Google Scholar 

  • Arai K, Clark BFC, Duffy L, Jones MD, Kaziro Y, Laursen RA, L'Italien J, Miller DL, Nagarkatti S, Nakamura S, Nielsen KM, Petersen TE, Takahashi K, Wade M (1980) Primary structure of the elongation factor Tu from Escherichia coli. Proc Natl Acad Sci USA 77:1326–1330

    Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique bacterial group. Microbiol Rev 43:260–296

    Google Scholar 

  • Beauclerk AAD, Hummel H, Holmes DJ, Böck A, Cundliffe E (1985) Studies of the GTPase domain of archaebacterial ribosomes. Eur J Biochem 151:245–255

    Google Scholar 

  • Bollschweiler C, Kühn R, Klein A (1985) Non-repetitive AT-rich sequences are found in intergenic regions of Methanococcus voltae DNA. EMBO J 3:805–809

    Google Scholar 

  • Bosch L, Kraal B, Van Noort JM, Van Delft J, Talens A, Vijgenboom E (1985) Novel RNA interactions with the elongation factor EF-Tu: consequences for protein synthesis and tuf gene expression. TIBS 10:313–316

    Google Scholar 

  • Bosch L, Kraal B, van Noort JM, van Delft JHN, Vijgenboom E, Talens A (1986) The elongation factor EF-Tu: structure, function and genetics. Biological Chemistry, Hoppe-Seyler [Suppl] 367:28

    Google Scholar 

  • Chen EJ, Seeburg PH (1985) Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170

    Google Scholar 

  • Cue D, Beckler GS, Reeve JN, Konisky J (1985) Structure and sequence divergence of two archaebacterial genes. Proc Natl Acad Sci USA 82:4207–4211

    Google Scholar 

  • Douglas C, Achatz F, Böck A (1980) Electrophoretic characterisation of ribosomal proteins from methanogenic bacteria. Zentralb Bakteriol Hyg IC1:1–11

    Google Scholar 

  • Gropp F, Reiter WD, Sentenac A, Zillig W, Schnabel R, Thomm M, Stetter KO (1986) Homologies of components of DNA-dependent RNA-polymerases of archaebacteria, eucaryotes and eubacteria. System Appl Microbiol 7:95–101

    Google Scholar 

  • Hori H, Osawa S (1979) Evolutionary change in 5S RNA secondary structure and a phylogenetic tree of 54 5S RNA species. Proc Natl Acad Sci USA 76:381–385

    Google Scholar 

  • Hori H, Osawa S (1986) Evolutionary change in 5S rRNA secondary structure and a phylogenetic tree of 352 5S rRNA species. Biosystems 19:163–172

    Google Scholar 

  • Hummel H, Jarsch M, Böck A (1986) Unique antibiotic sensitivity of protein synthesis in archaebacteria and the possible structural basis. In: Leive L, Schlessinger D (eds) Microbiology. American Society of Microbiology, Washington, pp 370–374

    Google Scholar 

  • Jarsch M, Böck A (1985) Sequence of the 16S ribosomal RNA gene from Methanococcus vannielii: Evolutionary implications. System Appl Microbiol 6:54–59

    Google Scholar 

  • Jarsch M, Altenbuchner J, Böck A (1983) Physical organisation of the genes for ribosomal RNA in Methanococcus vannielli. Mol Gen Genet 189:41–47

    Google Scholar 

  • Jonak J, Petersen TE, Clark BFC, Pychlik I (1982) N-Tosyl-L-phenylalanylchloromethane reacts with cysteine 81 in the molecule of elongation factor Tu from Escherichia coli. FEBS Lett 150:485–488

    Google Scholar 

  • Jonak J, Pokorna K, Meloun B, Karas K (1986) Structural homology between elongation factors EF-Tu from Bacillus stearothermophilus and Escherichia coli in the binding site of aminoacyl-tRNA. J Biochem 154:355–362

    Google Scholar 

  • Jurnak F (1985) Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins. Science 230:32–36

    Google Scholar 

  • Klink F (1985) Elongation factors. In: Woese CR, Wolfe R (eds) The bacteria, vol VIII, Archaebacteria. Academic Press, London pp 379–410

    Google Scholar 

  • La Cour TFM, Nyborg J, Thirup S, Clark BFC (1985) Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X-ray crystallography. EMBO J 4:2385–2388

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Lenstra JA, Vliet AV, Arnberg AC, Van Hemert FJ, Möller W (1986) Genes coding for the elongation factor EF-1α in Artemid. Eur J Biochem 155:475–483

    Google Scholar 

  • Londei P, Sanz JL, Altamura S, Hummel H, Cammarano P, Amils R, Böck A, Wolf H (1986) Unique antibiotic sensitivity of archaebacterial polypeptide elongation factors. J Bacteriol 167:265–271

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Matheson AT (1985) Ribosomes of archaebacteria. In Woese CR, Wolfe R (eds) The bacteria, vol VIII, Archaebacteria. Academic Press, London pp 345–377

    Google Scholar 

  • Maxam AM, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Montandon PE, Stutz E (1983) Nucleotide sequence of a Euglena gracilis chloroplast genome region coding for the elongation factor Tu; evidence for a spliced mRNA. Nucleic Acids Res 11:5877–5892

    Google Scholar 

  • Nagata S, Tsunetsugu-Yokota Y, Naito A, Kaziro Y (1983) Molecular cloning and sequence determination of the nuclear gene coding for mitochondrial elongation factor Tu of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 80:6192–6196

    Google Scholar 

  • Nagata S, Nagashima K, Tsunetsugu-Yokota Y, Fujimora K, Miyazaki M, Kaziro Y (1984) Polypeptide chain elongation factor 1 (EF-1α) from yeast: nucleotide sequence of one of the two genes for EF-1α from Saccharomyces cerevisiae. EMBO J 3:1825–1830

    Google Scholar 

  • Rüther U (1982) pUR250 allows rapid chemical sequencing of both strands of its inserts. Nucleic Acids Res 10:5765–5784

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Swart GWM, Kraal B, Bosch L, Parmeggiani A (1982) Allosteric changes of the guanine nucleotide site of elongation factor EF-Tu. FEBS Lett 142:101–106

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Google Scholar 

  • Van Noort JM, Kraal B, Sinjorgo KM, Persoon NLM, Johanns ESD, Bosch L (1986) Methylation in vivo of elongation factor EF-Tu at lysine-56 decreases the rate of tRNA-dependent GTP hydrolysis. Eur J Biochem 160:557–561

    Google Scholar 

  • Woese CR, Olsen GJ (1986) Archaebacterial phylogeny: perspectives on the urkingdoms. System Appl Microbiol 7:161–177

    Google Scholar 

  • Yaguchi M, Matheson AT, Visentin LP, Zucker M (1980) Molecular evolution of the alanine-rich acidic ribosomal A protein. In: Osawa S, Ozeki H, Uchida H, Yura T (eds) RNA polymerase, tRNA and ribosomes. Elsevier, Amsterdam, pp 585–600

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequence of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

  • Young RA, Davis RW (1983) Yeast RNA polymerase II genes: isolation with antibody probes. Science 222:778–782

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Isono

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lechner, K., Böck, A. Cloning and nucleotide sequence of the gene for an archaebacterial protein synthesis elongation factor Tu. Mol Gen Genet 208, 523–528 (1987). https://doi.org/10.1007/BF00328150

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00328150

Key words

Navigation