Skip to main content
Log in

An historical survey of ordinary linear differential equations with a large parameter and turning points

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  • Abramowitz, M., & Stegun, I. A., editors [1964], Handbook of Mathematical Functions, Formulas, Graphs, and Mathematical Tables, Appl. Math. Series 55, U.S. National Bureau of Standards, Washington, D.C.

    Google Scholar 

  • Airy, G. B. [1838], “On the Intensity of Light in the Neighborhood of a Caustic”, Trans. Camb. Philos. Soc., 6, 379–402.

    Google Scholar 

  • Aliev, N. A. [1966], “Asymptotic Representation of Fundamental Solutions of a System of First Order Equations”, Azerbaidzan Hos. Univ. Ucen. Zap. Ser. Fiz.—Mat. Nauk. (Russian; Azerbaijani summary), No. 5, 3–13.

  • Bailey, V. A. [1954], “Reflection of Waves by an Inhomogeneous Medium”, Sci. Rep. 67, Ionospheric Res. Lab., Penn. State Univ.

  • Bailey, V. A. [1954], “Reflections of Waves by an Inhomogeneous Medium”, Phys. Rev. 96, 865–868.

    Google Scholar 

  • Bell, R. P. [1944], “Eigenvalues and Eigenfunctions for the Operator D xx - ∣x∣”, Phil. Mag., 35, 582–588.

    Google Scholar 

  • Bell, R. P. [1945], “The Occurrence and Properties of Molecular Vibrations with V (x = a x 4)”, Proc. Roy. Soc. London Ser. A, 183, 328–337.

    Google Scholar 

  • Bellman, R., & Kalaba, R. [1958], “Invariant Imbedding, Wave Propagation, and the WKB Approximation”, Proc. Nat. Acad. Sci., 44, 317–319.

    Google Scholar 

  • Bellman, R., & Kalaba, R. [1959], “Functional Equations, Wave Propagation, and Invariant Imbedding”, J. Math. Mech., 8, 683–704.

    Google Scholar 

  • Birkhoff, G. D. [1908], “On the Asymptotic Character of the Solutions of Certain Differential Equations Containing a Parameter”, Trans. Am. Math. Soc., 9, 219–231.

    Google Scholar 

  • Birkhoff, G. D. [1909], “Singular Points of Linear Ordinary Differential Equations”, Trans. Am. Math. Soc. 10, 436–470.

    Google Scholar 

  • Birkhoff, G. D. [1933], “Quantum Mechanics and Asymptotic Series”, Bull. Am. Math. Soc., 39, 681–700.

    Google Scholar 

  • Birkhoff, G. D., & Langer, R. E. [1923], “The Boundary Problems and Developments Associated with a System of Ordinary Differential Equations of the First Order”, Proc. Amer. Acad. Arts. Sci., 58, 51–128.

    Google Scholar 

  • Bohnenblust, H. F., et al. [1953], “Asymptotic Solutions of Differential Equations with Turning Points, Review of the Literature”, Tech. Rep. 1, NR 043-121, Dept. Math., Calif. Inst. Tech., Pasadena, Calif.

  • Booker, H. G., & Walkinshaw, W. [1946], “Meteorological Factors in Radio-Wave Propagation”, Joint Conf. Phys. Soc. and Roy. Meteor. Soc., 80–127.

  • Boris, J. P., & Greene, J. M. [1969], “Determination of Subdominant Solutions Using a Partial Wronskian”, J. Comp. Phys., 4, 30–42.

    Google Scholar 

  • Bragg, R. E. [1958], “Fundamental Solutions of a Linear Ordinary Differential Equation of the Third Order in the Neighborhood of a Single Second Order Turning Point”, Duke Math. J., 25, 239–264.

    Google Scholar 

  • Brekhovskikh, L. M. [1960], Waves in Layered Media, Academic Press, New York.

    Google Scholar 

  • Bremmer, H. [1949], Terrestrial Radio Waves, Elsevier Pub. Co., New York.

    Google Scholar 

  • Bremmer, H. [1951], “The WKB Approximation as the First Term of a Geometric-Optical Series”, Comm. Pure and Appl. Math., 4, 105–115.

    Google Scholar 

  • Brillouin, L. [1926], “Rémarques sur la méchaniques ondulatoire”, J. Phys. Radium, 7, 353–368.

    Google Scholar 

  • Budden, K. G. [1961], Radio Waves in the Ionosphere, Cambridge Univ. Press.

  • Carrier, G. F., Krook, M., & Pearson, C. E. [1966], Functions of a Complex Variable, McGraw-Hill, New York.

    Google Scholar 

  • Cashwell, E. D. [1951], “The Asymptotic Solutions of an Ordinary Differential Equation in which the Coefficient of the Parameter is Singular”, Pacific J. Math., 1, 337–353.

    Google Scholar 

  • Cherry, T. M. [1949], “Uniform Asymptotic Expansions”, J. London Math. Soc., 24, 121–130.

    Google Scholar 

  • Cherry, T. M. [1950], “Asyptotic Expansions for the Hypergeometric Functions Occurring in Gas Flow Theory”, Proc. Roy. Soc. London Ser. A, 202, 507–522.

    Google Scholar 

  • Cherry, T. M. [1950], “Uniform Asymptotic Formulas for Functions with Transition Points”, Trans. Am. Math. Soc., 68, 224–257.

    Google Scholar 

  • Clark, R. A. [1963], “Asymptotic Solution of a Nonhomogeneous Differential Equation with a Turning Point”, Arch. Rational Mech. Anal., 12, 34–51.

    Google Scholar 

  • Copson, E. [1965], Asyptotic Expansions, Cambridge Univ. Press.

  • van der Corput, J. A. [1956], “Asymptotic Developments I: Fundamental Theorems of Asymptotics”, J. Anal. Mat., 4, 341–418.

    Google Scholar 

  • Dingle, R. B. [1958], “Asymptotic Expansions and Converging Factors I, II, III”, Proc. Roy. Soc. London Ser. A, 244, 456–475, 476–483, 484–490.

    Google Scholar 

  • Doetsch, G. [1943], Theorie und Anwendung der Laplace-Transformation, Dover Pub., New York.

    Google Scholar 

  • Dunham, J. L. [1932], “The WKB Method of Solving the Wave Equation”, Phys. Rev., 41, 713–720.

    Google Scholar 

  • Dorr, F. W. [1969], “The Asymptotic Behaviour and Numerical Solution of Singular Perturbation Problems with Turning Points”, Thesis, Univ. Wis., Madison, Wisconsin.

    Google Scholar 

  • Dorr, F. W. [1970], “Some Examples of Singular Perturbation Problems with Turning Points”, SIAM J. Math. Anal., 1, 141–146.

    Google Scholar 

  • Dorr, F. W., & Parter, S. V. [1969], “Extensions of Some Results on Singular Perturbation Problems with Turning Points”, LA-4290-MS Los Alamos Scientific Laboratory of Univ. Calif., Los Alamos, New Mexico.

  • Dorr, F. W., & Parter, S. V. [1970], “Singular Perturbations of Nonlinear Boundary Value Problems with Turning Points”, J. Math. Anal. Appl., 29, 273–293.

    Google Scholar 

  • van Dyke, M. [1964], Perturbation Methods in Fluid Dynamics, Academic Press, New York.

    Google Scholar 

  • Eagles, P. M. [1969], “Composite Series in the Orr-Sommerfeld Problem for Symmetric Channel Flow”, Q. J. Mech. Appl. Math., 22, 129–182.

    Google Scholar 

  • van Engen, H. [1939], “Concerning Gamma Function Expansions”, Tôhoku Math. J., 45, 124–129.

    Google Scholar 

  • Erdélyi, A. [1954], “Asymptotic Solutions of Differential Equations with Transition Points”, Proc. Intern. Congr. of Math. Amsterdam 1954, 3, 92–101.

    Google Scholar 

  • Erdélyi, A. [1955], “Differential Equations with Transition Points I: The First Approximation”, Tech. Rep. 6, Dept. of Math., Calif. Inst. Tech., Pasadena, Calif.

  • Erdélyi, A. [1956], “Asymptotic Factorization of Ordinary Linear Differential Operators Containing a Large Parameter”, Tech. Rep. 8, Dept. of Math., Calif. Inst. Techn., Pasadena, Calif.

  • Erdélyi, A. [1960] “Asymptotic Solutions of Differential Equations with Transition Points or Singularities”, J. Math. Phys., 1, 16–26.

    Google Scholar 

  • Erdélyi, A. [1961], “An Expansion Procedure for Singular Perturbations”, Atti della Accad. Sci. Torino I, Classe Sci. Fis., Mat., e Nat., 95, 651–672.

    Google Scholar 

  • Erdélyi, A. [1964] “The Integral Equations of Asymptotic Theory”, appearing in Proc. Sympos., Asymptotic Solutions of Differential Equations and Their Applications, C. H. Wilcox, ed., John Wiley, New York, 211–230.

    Google Scholar 

  • Erdélyi, A., Kennedy, M., & McGregor, J. [1954], “Parabolic Cylinder Functions of Large Order”, J. Rational Mech. Anal., 3, 459–485.

    Google Scholar 

  • Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. [1953], Higher Transcendental Functions I, II, III, McGraw-Hill, New York.

    Google Scholar 

  • Evgrafov, M. A., & Fedorjuk, M. V. [1966], “Asymptotic Behaviour of Solutions of the Equation w - p (z, λ) w = 0 as λ → ∞ in the Complex z-Plane”, Usp. Mat. Nauk., 21, 3–50.

    Google Scholar 

  • Evans, R. L. [1951], “Asymptotic Solutions in the Neighborhood of a Turning Point for Linear Ordinary Differential Equations Containing a Parameter”, Thesis, Univ. Minn., April, 1951.

  • Evans, R. L. [1953], “Solution of Linear Ordinary Differential Equations Containing a Parameter”, Proc. Am. Math. Soc., 4, 92–94.

    Google Scholar 

  • Evans, R. L. [1953], “Solution of Linear Ordinary Differential Equations Containing a Large Parameter”, OOR Rep., Contract DA-11-022-ORD-489, Univ. Minn.

  • Fabry, E. [1885], “Sur les intégrales des équations différentielles linéaires à coéfficients rationnels”, Thèse, Paris.

  • Fedorjuk, M. [1965a], “Asymptotics of the Discrete Spectrum of the Operator w″ - λ 2 p (x) w = 0”, Mat. Sb. (Russian), 68, 81–110.

    Google Scholar 

  • Fedorjuk, M. V. [1965b], “Topology of Stokes Curves for the Equation of the Second Order”, Izv. Akad. Nauk. SSSR Ser. Mat. (Russian), 29, 645–656.

    Google Scholar 

  • Fedorjuk, M. V. [1965c], “Asymptotic Behaviour in a One-Dimensional Scattering Problem”, Dokl. Akad. Nauk. SSSR (Russian), 162, 287–289.

    Google Scholar 

  • Fedorjuk, M. V. [1966], “Asymptotic Methods in the Theory of One-Dimensional Singular Differential Operators”, Tr. Mosk. Matem. Obsc. (Russian), 15, 296–345.

    Google Scholar 

  • Fedorjuk, M. V. [1969], “Asymptotic Expansions of Solutions of Differential Linear Equations of the Second Order in a Complex Domain”, MRC Tech. Sum. Rep., No. 993, trans. (from Russian) by F. Czyzewski, Math. Res. Centr., Univ. of Wis., Madison, Wisconsin.

    Google Scholar 

  • Feschenko, S. F., Shkil', N. I., & Nikolenko, L. D. [1967], Asymptotic Methods in the Theory of Linear Differential Equations, trans. (from Russian) by Scripta Technica, American Elsevier Pub. Co., New York.

    Google Scholar 

  • Ford, W. [1936], “The Asymptotic Developments of Functions Defined by MacLaurin Series”, Univ. of Mich. Science Series, No. 11.

  • Fowler, R. H. [1920] “The Aerodynamics of a Spinning Shell”, Phil. Trans. Roy. Soc. London Ser. A, 221, 295–387.

    Google Scholar 

  • Fraenkel, L. E. [1969], “On the Method of Matched Asymptotic Expansions I, II, III”, Proc. Camb. Phil. Soc., 65, 209–231, 233–261, 263–284.

    Google Scholar 

  • Friedrichs, K. O. [1953], Special Topics in Analysis, Part B (Lecture Notes), New York University.

  • Friedrichs, K. O. [1955], “Asymptotic Phenomena in Mathematical Physics”, Bull. Am. Math. Soc. 61, 485–504.

    Google Scholar 

  • Fröman, N. [1966], “Detailed Analysis of Some Properties of the JWKB Approximation”, Ark. Fys., 31, 381–408.

    Google Scholar 

  • Fröman, N, [1966], “A Method for Handling Approximate Solutions of Ordinary Linear Differential Equations”, Ark. Fys., 31, 445–451.

    Google Scholar 

  • Fröman, N. [1966], “Outline of a General Theory for Higher Order Approximations of the JWKB-Type”, Ark. Fys., 32, 541–548.

    Google Scholar 

  • Fröman, N. [1970], “Connection Formulas for Certain Higher Order Phase-Integral Approximations”, Ann. Phys., 61, 451–464.

    Google Scholar 

  • Fröman, N., & Fröman, P. O. [1965], JWKB Approximation: Contributions to the Theory, John Wiley, New York.

    Google Scholar 

  • Fry, C. G., & Hughes, H. K. [1942], “Asymptotic Developments of Certain Integral Functions”, Duke Math. J., 9, 791–802.

    Google Scholar 

  • Furry, W. H. [1947], “Two Notes on Phase Integral Methods”, Phys. Rev., 71, 360–371.

    Google Scholar 

  • Gans, R. C. [1915], “Fortpflanzung des Lichts durch ein inhomogenes Medium”, Ann. Phys.. (Leipzig), 47, 709–736.

    Google Scholar 

  • Gantacher, F. R. [1959], The Theory of Matrices, Vol. 2, trans. (from Russian) by K. A. Hirsch, Chelsea Pub. Co., New York.

    Google Scholar 

  • Gibbons, J. J., & Schrag, R. L. [1952], “The Wave Equation in a Region of Rapidly Varying Complex Refractive Index”, J. Appl. Phys., 23, 1139–1142.

    Google Scholar 

  • Goetschel, R. H. [1966], “Simplification of Certain Turning Point Problems for Systems of Order Four”, Thesis, University of Wisconsin.

  • Gol'dman, I., I. [1964], Problems in Quantum Mechanics, trans., ed., and rev. by D. ter Haar, 2nd ed., Academic Press, New York.

    Google Scholar 

  • Goldstein, S. [1928], “A Note on Certain Approximate Solutions of Linear Differential Equations of the Second Order with an Application to the Mathieu Equation”, Proc. London Math. Soc, (2), 8, 81–90.

    Google Scholar 

  • Goldstein, S. [1932], “A Note on Certain Approximate Solutions of Linear Differential Equations of the Second Order”, Proc. London Math. Soc. (2), 33, 246–252.

    Google Scholar 

  • Green, G. [1837], “On the Motion of Waves in a Variable Canal of Small Depth and Width”, Camb. Phil. Trans., 6, 457–462.

    Google Scholar 

  • Hanson, R. [1966], “Reduction Theorem for Systems of Ordinary Differential Equations with Turning Points”, J. Math. Anal. and Appl., 16, 280–301.

    Google Scholar 

  • Hanson, R. [1967], “Analytic Linear Systems of Differential Equations in Implicit Form”, Funkcial. Ekvac., 10, 123–131.

    Google Scholar 

  • Hanson, R. [1968], “Simplification of Second Order Systems of Ordinary Differential Equations with Turning Points”, SIAM J. Appl. Math., 16, 1059–1080.

    Google Scholar 

  • Hanson, R., & Russel, D. [1967], “Classification and Reduction of Second Order Systems at a Turning Point”, J. Math. and Phys., 46, 74–92.

    Google Scholar 

  • Harper, E., & Chang, I. [1970], “A Second Order JWKB Approximation with One Turning Point and Two Singular Points — Stability of an Accelerating Liquid Sphere”, Internal Memorandum, Bell Telephone Laboratories.

  • Harris, W. [1960], “Singular Perturbation Problems”, Bol. Soc. Mat. Mex. (2), 5, 245–254.

    Google Scholar 

  • Harris, W., & Turrittin, H. L. [1957], “Simplification of Systems of Linear Differential Equations Involving a Turning Point”, Rep. 2, Inst. Tech., Univ. Minn.

  • Heading, J. [1957], “The Stokes Phenomenon and Certain n th Order Differential Equations I, II”, Proc. Camb. Phil. Soc. 53, 399–418, 419–441.

    Google Scholar 

  • Heading, J. [1960], “The Stokes Phenomenon and Certain n th Order Differential Equations”, Proc. Camb. Phil. Soc., 56, 329–341.

    Google Scholar 

  • Heading, J. [1961], “The Nonsingular Imbedding of Transition Processes within a More General Framework of Coupled Variables”, J. Res. Nat. Bur. Stand. D, 65, 595–616.

    Google Scholar 

  • Heading, J. [1962], An Introduction to Phase Integral Methods, Methuen and Co. Ltd., London.

    Google Scholar 

  • Heading, J. [1962], “The Stokes Phenomenon of the Whittaker Function”, J. Lond. Math. Soc., 37, 195–208.

    Google Scholar 

  • Heading, J. [1962], “Phase Integral Methods I”, Quart. J. Mech. Appl. Math., 15, 215–244.

    Google Scholar 

  • Heading, J. [1963], “Uniformly Approximate Solutions of Certain n th Order Differential Equations I”, Proc. Camb. Phil. Soc., 59, 95–110.

    Google Scholar 

  • Heading, J. [1964], “Transition Point Values”, J. London Math. Soc., 39, 466–480.

    Google Scholar 

  • Hines, C. O. [1953], “Reflections of Waves from Varying Media”, Quart. Appl. Math., 11, 9–31.

    Google Scholar 

  • Hinton, D. B., [1968], “Asymptotic Behaviour of Solutions of (ry (m))(k)± qy = 0”, J. Diff. Eqns., 4, 590–596.

    Google Scholar 

  • Hochstadt, H. [1964], Differential Equations: A Modern Approach, Holt, Rhinehart, & Winston, New York.

    Google Scholar 

  • Horn, J. [1896] and [1897], „Über die Reihenentwicklung der Integrale eines Systems von Differentialgleichungen in der Umgebung gewisser singulärer Stellen“, J. Reine Angew. Math., 116, 265–306; 117, 104–128, 254–266.

    Google Scholar 

  • Horn, J. [1898], „Über das Verhalten der Integrale von Differentialgleichungen bei der Annäherung der Veränderlichen an eine Unbestimmtheitstelle“, J. Reine Angew. Math., 119, 196–209, 267–290.

    Google Scholar 

  • Horn, J. [1899a], „Über eine lineare Differentialgleichung Zweiter Ordnung mit einem willkürlichen Parameter“, Math. Ann., 52, 271–292.

    Google Scholar 

  • Horn, J. [1899b], „Über lineare Differentialgleichungen Zweiter mit einem Veränderlichen Parameter”, Math. Ann., 52, 340–362.

    Google Scholar 

  • Horn, J. [1912], „Fakultätenreihen in der Theorie der linearen Differentialgleichungen“, Math. Ann., 71, 510–532.

    Google Scholar 

  • Horn, J. [1915], „Integration linearer Differentialgleichungen durch Laplacesche Integrale und Fakultätenreihen“, Jahresker, Deut. Math. Ver., 24, 309–325; 25, 74–83.

    Google Scholar 

  • Horn, J. [1944], „Integration von linearer Differentialgleichungen durch Laplacesche Integrale I, II“, Mat. Z., 49, 339–350, 684–701.

    Google Scholar 

  • Hsieh, P. [1965], “A Turning Point Problem for a System of Linear Ordinary Differential Equations of the Third Order (of a Two-Dimensional Vector)”, Arch. Rational Mech. Anal., 19, 117–148.

    Google Scholar 

  • Hsieh, P. [1968], “On an Analytic Simplification of a System of Linear Differential Equations Containing a Parameter”, Proc. Am. Math. Soc., 19, 1201–1206.

    Google Scholar 

  • Hsieh, P., & Sibuya, Y. [1966], “On the Asymptotic Integration of Second Order Linear Ordinary Differential Equations with Polynomial Coefficients”, J. Math. Anal. Appl., 16, 84–103.

    Google Scholar 

  • Hsieh, P., & Sibuya, Y. [1966], “Regular Perturbations of Linear Differential Equations at an Irregular Singular Point”, Funkcial. Ekvac., 8, 99–108.

    Google Scholar 

  • Hsieh, P., & Shouse, O. D. [1967], “Reduction of Order of a System of Linear Nonhomogeneous Ordinary Differential Equations”, Bul. Inst. Politen. Bucuresti, 29, 21–24.

    Google Scholar 

  • Hughes, H. [1943], “On a Theorem of Newsom”, Bull. Am. Math. Soc. 49, 288–292.

    Google Scholar 

  • Hughes, H. [1945], “The Asymptotic Developments of a Class of Entire Functions”, Bull. Am. Math. Soc., 51, 456–461.

    Google Scholar 

  • Hukuhara, M. [1937], “Sur les propriétés asymptotiques des solutions d'un système d'équations différentielles linéaires contenant un paramètre”, Mem. Fac. Fngrg., Kyushu Imp. Univ., 8, 249–280.

    Google Scholar 

  • Hukuhara, M. [1942], “Sur les points singuliers des équations différentielles formelles d'un systeme différentiel ordinaire linéaire III”, Mem. Fac. Sci. Kyushu Imp. Univ., 2, 125–137.

    Google Scholar 

  • Hukuhara, M., & Iwano, M. [1959], “Étude de la convergence des solutions formelles d'un systeme différentiel ordinaire linéaire”, Funkcial. Ekvac., 2, 1–18.

    Google Scholar 

  • Hurd, C. C. [1938], “Asymptotic Theory of Linear Differential Equations Singular in the Variable of Differentiation and in a Parameter”, Tôhoku Math. J., 44, 243–274.

    Google Scholar 

  • Imai, I. [1948], “On a Refinement of the WKB Method”, in a letter to Phys. Rev., 74, 113.

    Google Scholar 

  • Imai, I. [1956], “A Refinement of the WKB Method ...”, IRE trans. A. P., 4, 233–239.

    Google Scholar 

  • Imai, I. [1958], “On the Heat Transfer to Constant-Property Laminar Boundary Layer”, Quart. Appl. Math., 16, 33–45.

    Google Scholar 

  • Iwano, M. [1963] and [1964], “Asymptotic Solutions of a System of Linear Ordinary Differential Equations Containing a Small Parameter I, II”, Funkcial. Ekvac., 5, 71–134; 6, 89–141.

    Google Scholar 

  • Iwano, M. [1964], “On the Behaviour of the Solutions of a n th Order Ordinary Differential Equation”, Japan. J. Math., 34, 1–53.

    Google Scholar 

  • Iwano, M. [1965], “On the Study of Asymptotic Solutions of a System of Linear Ordinary Differential Equation Containing a Parameter with a Singular Point”, Japan. J. Math., 35, 1–30.

    Google Scholar 

  • Iwano, M., & Sibuya, Y. [1963], “Reduction of the Order of a Linear Ordinary Differential Equation containing a Parameter”, Kōdai Math. Sem. Rep., 15, 1–28.

    Google Scholar 

  • Jeffreys, B. [1956], “The Use of the Airy Functions in a Potential Barrier Problem”, Proc. Camb. Phil. Soc., 52, 273–279.

    Google Scholar 

  • Jeffreys, H. [1924], “On Certain Approximate Solutions of Linear Differential Equations of the Second Order”, Proc. London Math. Soc., (2), 23, 428–436.

    Google Scholar 

  • Jeffreys, H. [1942], “Asymptotic Solutions of Linear Differential Equations”, Philos. Mag., 33, 451–456.

    Google Scholar 

  • Jeffreys, H. [1953], “On Approximate Solutions of Linear Differential Equations”, Proc. Camb. Phil. Soc., 49, 601–611.

    Google Scholar 

  • Jeffreys, H. [1956], “On the Use of Asymptotic Approximations of Green's Type when the Coefficient has a Zero”, Proc. Camb. Phil. Soc., 52, 61–66.

    Google Scholar 

  • Jeffreys, H. [1962], Asymptotic Approximation, Oxford University Press.

  • Jeffreys, H. & Jeffreys, B. [1956], Methods of Mathematical Physics, Cambridge University Press.

  • Jenssen, O. [1960], “Asymptotic Integration of the Differential Equation for a Special Case of Symmetrically Loaded Toroidal Shells”, J. Math. Phys., 39, 1–17.

    Google Scholar 

  • Jordan, P. F., & Shelley, P. E. [1965], “Formal Solutions of a Nonhomogeneous Differential Equation with a Double Transition Point”, J. Math. Phys., 6, 118–135.

    Google Scholar 

  • Jorna, A. [1964a], “Derivation of Green Type, Transitional, and Uniform Asymptotic Expansions from Differential Equations I. General Theory, and Application to Modified Bessel Functions of Large Order”, Proc. Roy. Soc. London Ser. A, 281, 99–110.

    Google Scholar 

  • Jorna, A. [1964b], “Derivation of Green Type, Transitional, and Uniform Asymptotic Expansions from Differential Equations II. Whittaker Functions W k,m for Large k and Large |k 2m 2|”, Proc. Roy. Soc. London Ser. A, 281, 111–129.

    Google Scholar 

  • Kazarinoff, N. [1955], “Asymptotic Expansions for the Whittaker Functions of Large Complex Order”, Trans. Am. Math. Soc., 78, 305–328.

    Google Scholar 

  • Kazarinoff, N. [1956], “Asymptotic Expansions with Respect to a Parameter of a Differential Equation Having an Irregular Singular Point”, Proc. Am. Math. Soc., 7, 62–69.

    Google Scholar 

  • Kazarinoff, N. [1958a], “Asymptotic Forms for the Whittaker Functions with Both Parameters Large”, J. Math. Mech., 6, 341–360.

    Google Scholar 

  • Kazarinoff, N. [1958b], “Asymptotic Theory of Second Order Differential Equations with Two Simple Turning Points”, Arch. Rat. Mech. Anal., 2, 129–150.

    Google Scholar 

  • Kazarinoff, N. [1964], “Application of Langer's Theory of Turning Points to Diffraction Problems”, appearing in Proc. Sympos., Asymptotic Solutions of Differential Equations and Their Applications, C. H. Wilcox, ed., John Wiley, New York, 231–244.

    Google Scholar 

  • Kazarinoff, H., & McKelvey, R. [1956], “Asymptotic Solutions of Differential Equations in a Domain Containing a Regular Singular Point”, Can. J. Math., 8, 97–104.

    Google Scholar 

  • Keller, H. B., & Keller, J. B. [1951], “On Systems of Linear Differential Equations”, Rep. EM-33, New York University.

  • Kemble, E. C. [1935], The Fundamental Principles of Quantum Mechanics, McGraw-Hill, New York.

    Google Scholar 

  • Kemble, E. C. [1935], “A Contribution to the Theory of the WKB Method”, Phys. Rev., 48, 549–561.

    Google Scholar 

  • Kemp, H., & Levinson, N. [1959], “On y xx +(1+λg(x))y=0”, Proc. Am. Math. Soc., 10, 82–86.

    Google Scholar 

  • Kiyek, K. [1967], “Über eine spezielle Klasse linearer Differentialgleichungen mit einem kleinem Parameter”, Arch. Rational Mech. Anal., 25, 135–147.

    Google Scholar 

  • Kramers, H. A. [1926], “Wellenmechanik und Halbzahlige Quantisierung”, Z. Physik., 39, 828–840.

    Google Scholar 

  • Kuhn, T. S. [1950], “An Application of the WKB Method to the Cohesive Energy of Monovalent Metals”, Phys. Rev., 79, 515–519.

    Google Scholar 

  • Kurss, H. [1957], “The Solution of Some Turning Point Problems”, Rep. IMM240, New York University.

  • Labianca, F., & Mow, V. [1969], “Radiation from a Point Source in a Bounded Ocean Characterized by Two Turning Points, Part I, The Formal Solution”, Internal Memorandum, Bell Telephone Laboratories.

  • Lakin, W. D., & Reid, W. H. [1970], “Stokes Multipliers for the Orr-Sommerfeld Equation”, Phil. Trans. Roy. Soc. London Ser. A, 268, 325–349.

    Google Scholar 

  • Lakin, W. D., & Sanchez, D. A. [1970], Topics in Ordinary Differential Equations: A Potpourri, Prindle, Weber & Schmidt Inc., Boston, Massachusetts.

    Google Scholar 

  • Landau, L., & Lifshitz, E. [1958], Quantum Mechanics, Pergamon Press, London.

    Google Scholar 

  • Langer, R. [1931], “On the Asymptotic Solutions of Ordinary Differential Equations with an Application to the Bessel Functions of Large Order”, Trans. Am. Math. Soc., 33, 23–64.

    Google Scholar 

  • Langer, R. [1932], “On the Asymptotic Solutions of Differential Equations with an Applications to the Bessel Functions of Large Complex Order”, Trans. Am. Math. Soc., 34, 447–480.

    Google Scholar 

  • Langer, R. [1934a], “The Asymptotic Solutions of Certain Linear Differential Equations of the Second Order”, Trans. Am. Math. Soc., 36, 90–106.

    Google Scholar 

  • Langer, R. [1934b], “The Solutions of the Mathieu Equation with Complex Variables and at least One Parameter Large”, Trans. Am. Math. Soc., 36, 637–695.

    Google Scholar 

  • Langer, R. [1934c], “The Asymptotic Solutions of Linear Ordinary Differential Equations with Reference to the Stokes Phenomenon”, Bull. Am. Math. Soc., 40, 545–582.

    Google Scholar 

  • Langer, R. [1935], “On the Asymptotic Solutions of Ordinary Differential Equations with Reference to the Stokes Phenomenon about a Singular Point”, Trans. Am. Math. Soc., 37, 397–416.

    Google Scholar 

  • Langer, R. [1937], “On the Connection Formulas and the Solution of the Wave Equation”, Phys. Rev., 51, 669–676.

    Google Scholar 

  • Langer, R. [1949], “The Asymptotic Solution of Ordinary Linear Differential Equations with Special Reference to a Turning Point”, Trans. Am. Math. Soc., 67, 461–490.

    Google Scholar 

  • Langer, R. [1950], “Asymptotic Solutions of a Differential Equation in the Theory of Microwave Propagation”, Comm. Pure Appl. Math., 3, 427–438.

    Google Scholar 

  • Langer, R. [1955], “On the Asymptotic Forms of Ordinary Differential Equations of the Third Order in a Region Containing a Turning Point”, Trans. Am. Math. Soc., 80, 93–123.

    Google Scholar 

  • Langer, R. [1955], “The Solutions of the Differential Equation: y‴λ2 z y′+3 μλ2 y=0” Duke. Math. J., 22, 525–542.

    Google Scholar 

  • Langer, R. [1956a], “The Solutions of a Class of Linear Ordinary Differential Equations of the Third Order in a Region Containing a Multiple Turning Point”, Duke Math. J., 23, 93–110.

    Google Scholar 

  • Langer, R. [1956b], “On the Construction of a Related Differential Equation”, Trans. Am. Math. Soc., 81, 394–410.

    Google Scholar 

  • Langer, R. [1957], “On the Asymptotic Solutions of a Class of Ordinary Differential Equations of the Fourth Order with a Special Reference to an Equation of Hydrodynamics”, Trans. Am. Math. Soc., 84, 144–191.

    Google Scholar 

  • Langer, R. [1959a], “The Asymptotic Solutions of a Linear Differential Equation of the Second Order with Two Turning Points”, Trans. Am. Math. Soc., 90, 113–142.

    Google Scholar 

  • Langer, R. [1959b], “Formal Solutions and a Related Equation for a Class of Fourth Order Differential Equations of Hydrodynamic Type”, Trans. Am. Math. Soc., 92, 371–410.

    Google Scholar 

  • Langer, R. [1959c], “Asymptotic Theories for Linear Ordinary Differential Equations Depending Upon a Parameter”, SIAM J. Appl. Math., 7, 298–305.

    Google Scholar 

  • Langer, R. [1960], “Turning Points in Linear Asymptotic Theory”, Bol. Soc. Mat. Mex. (2), 5, 1–12.

    Google Scholar 

  • Leavitt, W. G. [1948], “A Normal Form for Matrices whose Elements are Holomorphic Functions”, Duke Math. J., 15, 463–472.

    Google Scholar 

  • Leavitt, W. G. [1951], “On Systems of Linear Differential Equations”, Am. J. Math., 73, 690–696.

    Google Scholar 

  • Lee, R. [1967], “Uniform Reduction of a System of Ordinary Differential Equations at a Turning Point”, Math. Res. Centr., U.S. Army, Univ. Wis., Madison, Wisconsin.

    Google Scholar 

  • Lee, R. Y. [1968], “Turning Point Problems of Almost Diagonal Systems”, J. Math. Anal. Appl., 24, 509–526.

    Google Scholar 

  • Lee, R. Y. [1969], “On Uniform Simplification of a Linear Differential Equation in a Full Neighborhood of a Turning Point”, J. Math. Anal. Appl., 27, 501–510.

    Google Scholar 

  • Lin, C. C. [1945] and [1946], “On the Stability of Two Dimensional Parallel Flows, I, II, III”, Quart. Appl. Math., 3, 117–142, 218–234, 277–301.

    Google Scholar 

  • Lin, C. C. [1958a], “On the Instability of Laminar Flow and its Transition to Turbulence”, appearing in Proc. Sympos. on Boundary Layer Theory (Freiburg), Springer-Verlag, New York, 144–160.

    Google Scholar 

  • Lin, C. C. [1958b], “On The Stability of the Laminar Boundary Layer”, appearing in Symposium Naval Hydro. Counc., Nat. Res. Counc. Pub., Washington, D.C., 353–371.

    Google Scholar 

  • Lin, C. C. [1964], “Some Examples of Asymptotic Problems in Mathematical Physics”, appearing in Proc. Sympos., Asymptotic Solutions of Differential Equations and Their Applications, John Wiley, New York, 129–144.

    Google Scholar 

  • Lin, C. C. [1966], The Theory of Hydrodynamic Stability, Cambridge University Press.

  • Lin, C. C., & Rabenstein, A. L. [1960], “On the Asymptotic Solutions of a Class of Ordinary Differential Equations of the Fourth Order”, Trans. Am. Math. Soc., 94, 24–57.

    Google Scholar 

  • Lin, C. C., & Rabenstein, A. L. [1969], “On the Asymptotic Theory of a Class of Ordinary Differential Equations of Fourth Order, II, Existence of Solutions which are Approximated by the Formal Solutions”, Studies in Appl. Math., 48, 311–340.

    Google Scholar 

  • Linstone, H. A. [1954], “Singular Peturbations of Linear Differential Equations in the Complex Domain”, Thesis, Univ. Calif., Los Angeles.

    Google Scholar 

  • Liouville, J. [1837], “Sur les développement des fonctions ...”, J. Math. Pures Appl. (1), 2, 16–35.

    Google Scholar 

  • Lynn, R. [1968], “Uniform Asymptotic Expansions of Second Order Differential Equations with Turning Points”, Thesis, New York University.

  • Lynn, R., & Keller, J. B. [1970], “Uniform Asymptotic Solutions of Second Order Linear Ordinary Differential Equations with Turning Points”, Comm. Pure Appl. Math., 23, 379–408.

    Google Scholar 

  • Malmquist, J. [1941], “Sur l'étude analytique ..., I, II, III”, Acta Math., 73, 87–129; 74, 1–64, 109–128.

    Google Scholar 

  • Malmquist, J. [1943], “Sur les points singuliers des équations différentielles”, Ark. Math. Astr. Fys., 29A, No. 18.

  • McGuinness, D. L. [1965], “Differential Equations with Second Order Turning Points”, Thesis, Case Inst. Tech.

  • McGuiness, D. L. [1966], “Nonhomogeneous Differential Equation with a Second Order Turning Point”, J. Math. Phys., 7, 1030–1037.

    Google Scholar 

  • McHugh, J. A. M. [1970], “New Results in Turning Point Theory”, Thesis, New York University.

  • McKelvey, R. [1955], “The Solutions of Second Order Ordinary Differential Equations about a Turning Point of Order Two”, Trans. Am. Math. Soc., 79, 103–123.

    Google Scholar 

  • McKelvey, R. [1957], “Solution About a Singular Point of a Linear Differential Equation Involving a Large Parameter”, Trans. Am. Math. Soc., 91, 410–424.

    Google Scholar 

  • McKelvey, & Kazarinoff, N. [1956], “Asymptotic Solutions of Differential Equations in a Domain Containing a Regular Singular Point”, Can. J. Math., 8, 97–104.

    Google Scholar 

  • McLeod, J. B. [1961], “The Determination of the Transmission Coefficient”, Quart, J. Math. (2), 12, 153–158.

    Google Scholar 

  • Meksyn, D. [1947], “Asymptotic Integration of a Fourth Order Differential Equation Containing a Large Parameter”, Proc. London Math. Soc. (2), 49, 436–457.

    Google Scholar 

  • Miller, J. C. P. [1946], “The Airy Integral”, British Assoc. of Math. Tables, Cambridge Univ. Press.

  • Miller, J. C. P. [1955], “Tables of Weber Parabolic Cylinder Functions”, H. M. Stationary Office, London (see also, [1968] Russ. trans. and suppl. by M. K. Kerimov, Vycisl. Centr. Akad. Nauk. SSSR, Moscow).

  • Miller, S. G., & Good, R. H. [1953], “A WKB Type Approximation to the Schroedinger Equation”, Phys. Rev., 91, 174–179.

    Google Scholar 

  • Millington, G. [1969], “Stokes Phenomenon”, Radio Sci., 4, 95–115.

    Google Scholar 

  • Moriguchi, H. [1959a], “Connection Formulas for WKB Solutions with Two Turning Points”, J. Phys. Soc. Japan., 14, 968.

    Google Scholar 

  • Moriguchi, H. [1959b], “An Improvement of the WBK Method...”, J. Phys. Soc. Japan. 14, 1771–1796.

    Google Scholar 

  • Morse, P. M., & Feshback, H. [1953], Methods of Theoretical Physics, Part 2, McGraw-Hill Book Co., Inc., New York.

    Google Scholar 

  • Mullin, F. E. [1968], “On the Regular Perturbation of the Subdominant Solution to Second Order Linear Ordinary Differential Equations”, Funkcial. Ekvac., 11, 1–38.

    Google Scholar 

  • Murphy, E. L., & Good, R. H. [1964], “WKB Connection Formulas”, J. Math. and Phys., 43, 251–254.

    Google Scholar 

  • Newsom, C. V., & Franck, A. [1940], “On the Asymptotic Representation of Functions of the Bessel Type”, Bol. Mat., 13, 11–14.

    Google Scholar 

  • Newsom, C. V. [1943], “The Asymptotic Behaviour of a Class of Entire Functions”, Am. J. Math., 65, 450–454.

    Google Scholar 

  • Nishimoto, T. [1965], “On Matching Problems for a Linear Ordinary Differential Equation Containing a Parameter, I, II, III”, Kōdai Math. Sem. Rep., 17, 198–221, 307–328; 18, 61–86.

    Google Scholar 

  • Nishimoto, T. [1967], “On Matching Methods for a Linear Ordinary Differential Equation Containing a Parameter”, Kōdai Math. Sem. Rep., 19, 80–94.

    Google Scholar 

  • Nishimoto, T. [1968], “A Turning Point Problem of an n th Order Differential Equation of Hydrodynamic Type”, Kōdai Math. Sem. Rep., 20, 218–256.

    Google Scholar 

  • Nishimoto, T. [1969], “A Remark on a Turning Point Problem”, Kōdai Math. Sem. Rep., 21, 58–63.

    Google Scholar 

  • Nishimoto, T., & Okubo, K. [1966], “A Connection Problem for a Nonhomogeneous System of Linear Ordinary Differential Equations”, Funkcial. Ekvac., 9, 291–298.

    Google Scholar 

  • Noaillon, P. [1912], “Dévelopments asymptotiques dans les équations linéaires à paramètre variable”, Mem. Soc. Roy. Sci. Liège IIIe Ser., 9.

    Google Scholar 

  • Nörlund, N. [1926], “Leçons sur les Séries d'Interpolation”, Gautiers-Villars, Paris.

    Google Scholar 

  • Okubo, K. [1961], “On Certain Reduction Theorems for Systems of Differential Equation which Contain a Turning Point”, Proc. Japan Acad., 37, 544–549.

    Google Scholar 

  • Okubo, K. [1963], “A Global Representation for a Fundamental Set of Solutions and a Stokes Phenomenon for a System of Linear Ordinary Differential Equations”, J. Math. Soc. Japan, 15, 268–288.

    Google Scholar 

  • Okubo, K. [1965], “A Connection Problem Involving a Logarithmic Function”, Publ. Res. Inst. Math. Sci. Univ. Kyoto, Ser. A., 1, 99–128.

    Google Scholar 

  • Olver, F. W. J. [1954a], “The Asymptotic Solution of Linear Differential Equations of the Second Order for Large Values of a Parameter”, Phil. Trans. Roy. Soc. London Ser. A, 247, 307–327.

    Google Scholar 

  • Olver, F. W. J. [1954b], “The Asymptotic Expansion of Bessel Functions of Large Order”, Phil. Trans. Roy. Soc. London Ser. A 247, 328–368.

    Google Scholar 

  • Olver, F. W. J. [1956], “The Asymptotic Solutions of Linear Differential Equations of the Second Order in a Domain Containing One Transition Point”, Phil. Trans. Roy. Soc. London Ser. A, 248, 65–97.

    Google Scholar 

  • Olver, F. W. J. [1958], “Uniform Asymptotic Expansions of Linear Second Order Differential Equations for Large Values of a Parameter”, Phil. Trans. Roy. Soc. London Ser. A, 250, 479–517.

    Google Scholar 

  • Olver, F. W. J. [1959a], “Linear Differential Equations of Second Order with a Large Parameter”, SIAM J. Appl. Math., 7, 306–310.

    Google Scholar 

  • Olver, F. W. J. [1959b], “Uniform Asymptotic Expansions for Weber Parabolic Cylinder Functions of Large Order”, J. Res. Nat. Bur. Stand. Sect. B, 63, 131–169.

    Google Scholar 

  • Olver, F. W. J. [1961], “Error Bounds for the Liouville-Green (WKB) Approximations”, Proc. Camb. Phil. Soc., 57, 790–810.

    Google Scholar 

  • Olver, F. W. J. [1963], “Error Bounds for First Approximations in Turning Point Problems”, SIAM J. Appl. Math., 11, 748–772.

    Google Scholar 

  • Olver, F. W. J. [1964], “Error Bounds for Asymptotic Expansions with an Application to Cylinder Functions of Large Argument”, appearing in Proc. Sympos., Asymptotic Solutions of Differential Equations and Their Applications, C. H. Wilcox, ed., John Wiley, New York, pp 163–183.

    Google Scholar 

  • Olver, F. W. J. [1965a], “On the Asymptotic Solutions of Second Order Differential Equations Having an Irregular Singularity of Rank One, with an Application to Whittaker Functions”, SIAM J. Numer. Anal. 2, 225–243.

    Google Scholar 

  • Olver, F. W. J. [1965b], “Error Analysis of Phase Integral Methods, I: General Theory for Simple Turning Points”, J. Res. Nat. Bur. Stand. Sect. B, 69, 271–290.

    Google Scholar 

  • Olver, F. W. J. [1965c], “Error Analysis of Phase Integral Methods, II: Application to Wave Penetration Problems”, J. Res. Nat. Bur. Stand. Sect. B, 69, 291–300.

    Google Scholar 

  • Olver, F. W. J., & Stenger, F. [1965], “Error Bounds for Asymptotic Solutions of Second-Order Differential Equations Having an Irregular Singularity of Arbitrary Rank”, SIAM J. Numer. Anal., 2, 244–249.

    Google Scholar 

  • O'Malley, R. E. [1970], “On Boundary Value Problems for a Singularly Perturbed Differential Equation with a Turning Point”, SIAM J. Math. Anal., 1, 479–490.

    Google Scholar 

  • Perron, O. [1918], [1918], and [1919], “Über die Abhängigkeit der Integrale eines Systems linearer Differentialgleichungen von einem Parameter”, Sitz. der Heidelberger Akad. der Wissen., Math. Naturw., Abh. 13, Abh. 15, Abh. 3.

  • Philipson, L. L. [1954], “The Asymptotic Character of the Solutions of a Class of Ordinary Linear Differential Equations Depending on a Parameter”, Thesis, Univ. Calif., Los Angeles.

    Google Scholar 

  • Pike, E. R. [1964], “On the Related Equation Method of Asymptotic Approximation, I, II: Direct Solutions of Wave Penetration Problems”, Quart. J. Mech. Appl. Math., 17, 105–124, 369–379.

    Google Scholar 

  • Pitts, C. G. [1966] “y xx +(λ-q(x))y=0 on x≧0”, Quart. J. Math., (2), 17, 307–320.

    Google Scholar 

  • Poincaré, H. [1886], “Sur les intégrales irrégulières des équations linéaires”, Acta. Math., 8, 295–344.

    Google Scholar 

  • Ráb, M. [1966], “Note sur les formules asymptotiques pour les solutions d'un système d'équations différentielles linéaires”, Czechoslovak Math. J., 16, 127–129.

    Google Scholar 

  • Ráb, M. [1969], “Asymptotic Formulas for the Solutions of a System of Linear Differential Equations y′=[A+B(x)]y”, Casopis Pest. Math. (Czech. summary), 94, 78–83, 107.

    Google Scholar 

  • Rabenstein, A. L. [1958], “Asymptotic Solutions of u (4)2(zu″+αu′+βu)=0 for Large |λ|”, Arch. Rational Mech. Anal., 1, 418–435.

    Google Scholar 

  • Rabenstein, A. L. [1959], “The Determination of the Inverse Matrix for a Basic Reference Equation for the Theory of Hydrodynamic Stability”, Arch. Rational Mech. Anal., 2, 355–366.

    Google Scholar 

  • Rayleigh, J. W. (J. W. Strutt), [1912], “On the Propagation of Waves Through a Stratified Medium with Special Reference to the Question of Reflection”, Proc. Roy. Soc. London Ser. A, 86, 207–226.

    Google Scholar 

  • Russell, D. L. [1967], “Analytic Simplification of Second Order Systems with Combined Transition Point—Regular Singular Point”, Funkcial. Ekvac., 10, 15–34.

    Google Scholar 

  • Russell, D., & Sibuya, Y. [1966], “The Problem of Singular Perturbations of Linear Ordinary Differential Equations at Regular Singular Points, I”, Funkcial. Ekvac., 9, 207–218.

    Google Scholar 

  • Russell, D. L., & Sibuya, Y. [1969], “The Problem of Singular Perturbations of Linear Ordinary Differential Equations at Regular Singular Points, II”, Funkcial. Ekvac., 11, 175–184.

    Google Scholar 

  • Saito, T. [1962], “On a Singular Point of a Second Order Linear Differential Equation Containing a Parameter”, Funkcial. Ekvac., 5, 1–29.

    Google Scholar 

  • Scheffé, H. [1936], “Asymptotic Solutions of Certain Linear Differential Equations in Which the Coefficient of the Parameter may have a Zero”, Trans. Am. Math. Soc., 40, 127–154.

    Google Scholar 

  • Scheffé, H. [1942], “Linear Differential Equations with Two Term Recurrence Formulas”, J. Math. Phys., 21, 240–249.

    Google Scholar 

  • Schlesinger, L. [1907], “Über asymptotische Darstellungen der Lösungen linearer Differentialsysteme als Funktionen eines Parameters”, Math. Ann., 63, 277–300.

    Google Scholar 

  • Schwid, N. [1935], “The Asymptotic Forms of the Hermite and Weber Functions”, Trans. Am. Math. Soc., 37, 339–362.

    Google Scholar 

  • Sibuya, Y. [1954], “Sur un système des équations différentielles ordinaires linéaires à coéfficients periodiques et contenant des paramètres”, J. Fac. Sci., Univ. Tokyo, (1), 7, 229–241.

    Google Scholar 

  • Sibuya, Y. [1958a], “Second Order Linear Ordinary Differential Equations Containing a Large Parameter”, Proc. Japan. Acad., 34, 229–234.

    Google Scholar 

  • Sibuya, Y. [1958b] “Sur réduction analytique d'un système d'équations différentielles ordinaires linéaires contenant un paramètre”, J. Fac. Sci., Univ. Tokyo, (1), 7, 527–540.

    Google Scholar 

  • Sibuya, Y. [1959], “On the Problem of Turning Points”, MRC Techn. Sum. Report, No. 105, Math. Res. Ctr. U.S. Army, Univ. of Wis., Madison, Wis.

    Google Scholar 

  • Sibuya, Y. [1960a], “On Perturbations of Discontinuous Solutions of Ordinary Differential Equations”, Nat. Sci. Rep., Ochaniomizu Univ., 11, 1–18.

    Google Scholar 

  • Sibuya, Y. [1960b], “On Nonlinear Ordinary Differential Equations Containing a Parameter”, J. Math. Mech., 9, 369–398.

    Google Scholar 

  • Sibuya, Y. [1962a], “Simplification of a System of Linear Ordinary Differential Equations about a Singular Point”, Funkcial. Ekvac., 4, 29–56.

    Google Scholar 

  • Sibuya, Y. [1962b], “Asymptotic Solutions of a System of Linear Ordinary Differential Equations Containing a Parameter”, Funkcial. Ekvac., 4, 83–113.

    Google Scholar 

  • Sibuya, Y. [1962c], “Formal Solutions of a Linear Ordinary Differential Equation of the n th Order at a Turning Point”, Funkcial. Ekvac., 4, 115–139.

    Google Scholar 

  • Sibuya, Y. [1963a], “Simplification of a Linear Ordinary Differential Equation of the n th Order at a Turning Point”, Arch. Rational Mech. Analysis, 13, 206–221.

    Google Scholar 

  • Sibuya, Y. [1963b], “Asymptotic Solutions of a Linear Ordinary Differential Equation of n th Order about a Simple Turning Point”, appearing in Internat. Symp. Nonlinear Differential Equations and Nonlinear Mechanics, 485–488, Academic Press, New York.

    Google Scholar 

  • Sibuya, Y. [1964], “On the Problem of Turning Points for Systems of Linear Ordinary Differential Equations of Higher Orders”, Proc. Sympos., Asymptotic Solutions of Differential Equations and Their Applications, Math. Res. Ctr., U.S. Army, Univ. Wisconsin, Madison, Wis., Wiley, New York, 145–162.

    Google Scholar 

  • Sibuya, Y. [1967], “Subdominant Solutions of the Differential Equation y″=λ2 (x-a 1) ... (x-a m )y″, Acta. Math., 119, 235–272.

    Google Scholar 

  • Slavjanov, S. J. [1969], “Asymptotic Behaviour of Singular Sturm-Liouville Problems for Large Parameter in the Neighborhood of Nearby Transition Points”, Differencial'nye Uravenija, 5, 313–325.

    Google Scholar 

  • Slavjanov, S. J., & Buldgrev, V. S. [1968], “Uniform Asymptotic Expansions for Solutions of an Equation of Schrödinger Type with Two Transition Points, I”, Vestnik Leningrad. Univ., 23, 70–84.

    Google Scholar 

  • Slepian, D. [1965], “Some Asymptotic Expansions for Prolate Spheroidal Wave Functions”, J. Math. and Phys., 44, 99–140.

    Google Scholar 

  • Stengle, G. [1961], “A Construction for Solutions of an n th Order Linear Differential Equation in the Neighborhood of a Turning Point”, Thesis, Univ. Wis.

  • Stengle, G. [1969], “Uniform Asymptotic Solution of Second Order Linear Differential Equation without Turning Varieties”, Math. Comp., 23, 1–22.

    Google Scholar 

  • Stokes, G. G. [1857], “On the Discontinuity of Arbitrary Constants which Appear in Divergent Developments”, Trans. Camb. Phil. Soc., 10, 105–128.

    Google Scholar 

  • Stokes, G. G. [1868], “Supplement to a Paper on the Discontinuity of Arbitrary Constants, etc.”, Trans. Camb. Phil. Soc., 11, 412–425.

    Google Scholar 

  • Stokes, G. G. [1889], “Note on the Determination of Arbitrary Constants which Appear as Multipliers of Semi-Convergent Series”, Proc. Camb. Phil. Soc., 6, 362–366.

    Google Scholar 

  • Streifer, W. [1968], “Uniform Asymptotic Expansions for Prolate Spheriodal Wave Functions”, J. Math. and Phys., 47, 407–415.

    Google Scholar 

  • Swann, D. W. [1970a], “Asymptotic Solutions of Second Order Linear Differential Equations with Two Simple Turning Points whose Locations Depend Upon a Parameter”, Internal Memorandum, Bell Telephone Laboratories.

  • Swann, D. W. [1970b], “Improved Solutions to an Underwater Sound Propagation Problem”, Internal Memorandum, Bell Telephone Laboratories.

  • Swanson, C. A. [1956], “Differential Equations with Singular Points”, Techn. Rep. 16, Contract Nonr. 220(11), Dept. of Math., Cal. Inst. Techn., Pasadena, Calif.

  • Swanson, C. A., & Headley, V. B. [1967], “An Extension of Airy's Equation”, SIAM J. Appl. Math., 15, 1400–1412.

    Google Scholar 

  • Synge, J. [1938], “Hydrodynamical Stability”, Semi-Centenial Publications of Am. Math. Soc., 2, 227–269.

    Google Scholar 

  • Tamarkin, J. [1927], “Some General Problems of the Theory of Ordinary Linear Differential Equations and Expansions of an Arbitrary Function in Series of Fundamental Functions”, Math. Z., 37, 1–54.

    Google Scholar 

  • Tamarkin, J., & Besikowitsch, A. [1924], “Über die asymptotischen Ausdrücke für die Integrale eines Systems linearer Differentialgleichungen die von einem Parameter abhängen”. Math. Z., 21, 119–125.

    Google Scholar 

  • Thorne, R. C. [1956], “The Asymptotic Expansion of Legendre Functions of Large Degree and Order”, Tech. Rep. 12, 13, ONR, NR-043-121, Dept. Math., Calif. Inst. Tech., Pasadena, Calif.

  • Thorne, R. C. [1957a], “The Asymptotic Solution of Differential Equations with a Turning Point and Singularities”, Proc. Cam. Phil. Soc., 53, 382–398.

    Google Scholar 

  • Thorne, R. C. [1957b], “The Asymptotic Solution of Linear Second Order Differential Equations in a Domain Containing a Turning Point and a Regular Singularity”, Phil. Trans. Roy. Soc. London Ser. A, 249, 585–596.

    Google Scholar 

  • Titchmarsh, E. C. [1946], Eigenfunctions Expansions, Vol. 1, Oxford.

  • Tollmien, W. [1929], “Über die Entstehung der Turbulenz”, Nachr. Ges. Wiss. Göttingen, Math. Phys. Klasse, 21–44.

  • Tollmien, W. [1947], “Asymptotische Integration der Störungsdifferentialgleichung ebener laminarer Strömungen bei hohen Reynoldschen Zahlen”, Z. Angew. Math. Mech., 25/27, 33–50, 70–83.

    Google Scholar 

  • Tollmien, W. [1948], “Laminare Grenzschichten”, appearing in Fiat Rev. German Sci. 1939–40, Hydro and Aero-Dynamics, Wiesbaden.

  • Trjitzinsky, W. J. [1934], “Analytic Theory of Linear Differential Equations”, Acta. Math., 62, 167–226.

    Google Scholar 

  • Trjitzinsky, W. J. [1935], “Laplace Integrals and Factorial Series in the Theory of Linear Differential and Difference Equations”, Trans. Am. Math. Soc., 37, 80–146.

    Google Scholar 

  • Trjitzinsky, W. J. [1936], “Theory of Linear Differential Equations Containing a Parameter”, Acta. Math., 67, 1–50.

    Google Scholar 

  • Turrittin, W. J. [1936], “Asymptotic Solutions of Certain Ordinary Differential Equations Associated with Multiple Roots of the Characteristic Equation”, Am. J. Math., 58, 364–376.

    Google Scholar 

  • Turrittin, H. L. [1950], “Stokes Multipliers for Asymptotic Solutions of a Certain Differential Equation”, Trans. Am. Math. Soc., 68, 304–329.

    Google Scholar 

  • Turrittin, H. L. [1952], “Asymptotic Expansions of Solutions of Systems of Ordinary Differential Equations”, Contributions to the Theory of Nonlinear Oscillations II; Ann. of Math. Studies No. 29, 81–116, Princeton.

  • Turrittin, H. L. [1955], “Convergent Solutions of Ordinary Linear Homogeneous Differential Equations in the Neighborhood of an Irregular Singular Point”, Acta Math., 93, 27–66.

    Google Scholar 

  • Turrittin, H. L. [1963], “Reducing the Rank of Ordinary Differential Equations”, Duke Math. J., 30, 271–274.

    Google Scholar 

  • Turrittin, H. L. [1964], “Solvable Related Equations Pertaining to Turning Point Problems”, Asymptotic Solutions of Differential Equations and Their Applications, edited by C. H. Wilcox, Wiley, New York, 27–52.

    Google Scholar 

  • Turrittin, H. L. [1966], “Stokes Multipliers for the Differential Equation x y (n)=y”, Funkcial. Ekvac., 9, 261–272.

    Google Scholar 

  • Turrittin, H. L., & Harris, W. [1957], “Simplification of Systems of Linear Differential Equations Involving a Turning Point”, Tech. Rep. 2, Inst. Tech., Univ. Minn.

  • Wasow, W. [1944], “On the Asymptotic Solution of Boundary Value Problems for Ordinary Differential Equations Containing a Parameter”, J. Math. Phys., 32, 173–183.

    Google Scholar 

  • Wasow, W. [1948], “The Complex Asymptotic Theory of a Fourth Order Differential Equation of Hydrodynamics”, Ann. Math., 49, 852–871.

    Google Scholar 

  • Wasow, W. [1950a], “On the Construction of Periodic Solutions of Singular Perturbation Problems”, Contributions to the Theory of Nonlinear Oscillations, Ann. of Math. Studies vol. 20, Princeton, 313–350.

  • Wasow, W. [1950b], “A Study of the Solutions of the Differential Equation y (4)2(x y″+y)=0 for Large Values of λ”, Ann. Math., (2), 52, 350–361.

    Google Scholar 

  • Wasow, W. [1953], “Asymptotic Solution of the Differential Equation of Hydrodynamic Stability in a Domain Containing a Transition Point”, Ann. Math., 58, 222–252.

    Google Scholar 

  • Wasow, W. [1956], “Singular Perturbations of Boundary Value Problems for Nonlinear Differential Equations of the Second Order”, Comm. Pure Appl. Math., 9, 93–113.

    Google Scholar 

  • Wasow, W. [1959], “Solution of Nonlinear Differential Equations with a Parameter by Asymptotic Series”, Ann. Math., 69, 486–509.

    Google Scholar 

  • Wasow, W. [1960], “A Turning Point Problem for a System of Two Linear Differential Equations”, J. Math. Phys., 38, 257–278.

    Google Scholar 

  • Wasow, W. [1961], “Turning Point Problems for Systems of Linear Equations, I. — The Formal Theory”, Comm. Pure Appl. Math., 14, 657–673.

    Google Scholar 

  • Wasow, W. [1962a], “Turning Point Problems for Systems of Linear Differential Equations, II. — The Analytic Theory”, Comm. Pure Appl. Math., 15, 173–187.

    Google Scholar 

  • Wasow, W. [1962b], “On Holomorphically Similar Matrices”, J. Math. Anal. Appl., 4, 202–206.

    Google Scholar 

  • Wasow, W. [1963a], “Simplification of Turning Point Problems for System of Linear Differential Equations”, Trans. Am. Math. Soc., 106, 100–114.

    Google Scholar 

  • Wasow, W. [1964], “Asymptotic Expansions for Ordinary Differential Equations: Trends and Problems”, appearing in Proc. Sympos., Asymptotic Solutions of Differential Equations and Their Applications, Math. Res. Centr., U.S. Army, Univ. Wis., Madison, Wis., 3–26, John Wiley, New York, 1964.

    Google Scholar 

  • Wasow, W. [1965], Asymptotic Expansions for Ordinary Differential Equations, Interscience, New York.

    Google Scholar 

  • Wasow, W. [1966a], “Almost Diagonal Systems”, Funkcial. Ekvac., 8, 143–171.

    Google Scholar 

  • Wasow, W. [1966b], “On Analytic Validity of Formal Simplifications of Linear Differential Equations, I”, Funkcial. Ekvac., 9, 83–92.

    Google Scholar 

  • Wasow, W. [1967], “On the Analytic Validity of Formal Simplifications of Linear Differential Equations, II”, Funkcial. Ekvac., 10, 107–122.

    Google Scholar 

  • Wasow, W. [1968], “Connection Problems for Asymptotic Series”, Bull. Am. Math. Soc., 74, 831–853.

    Google Scholar 

  • Wasow, W. [1970a], “Simple Turning Point Problems in Unbounded Domains”, SIAM J. Math. Anal., 1, 153–170.

    Google Scholar 

  • Wasow, W. [1970b], “The Central Connection Problem at Turning Points of Linear Differential Equations”, to be published.

  • Watson, G. N. [1948], A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge Univ. Press.

  • Wentzel, G. [1926], “Eine Verallgemeinerung der Quantenbedingung für die Zwecke der Wellenmechanik”, Z. Physik., 38, 518–529.

    Google Scholar 

  • Wilcox, C. H. ed. [1964], Proc. Sympos., Asymptotic Solutions of Differential Equations and Their Applications, Math. Res. Ctr., U.S. Army, Univ. Wis., Madison, Wis., John Wiley, New York.

    Google Scholar 

  • Wright, E. M. [1935], “The Asymptotic Expansion of the Generalized Bessel Function”, Proc. London Math. Soc. (2), 38, 257–270.

    Google Scholar 

  • Wright, E. M. [1935], “The Asymptotic Expansion of the Generalized Hypergeometric Function”, J. London Math. Soc., 10, 286–293.

    Google Scholar 

  • Wright, E. M. [1940a], “The Asymptotic Expansion of Integral Functions Defined by Taylor Series”, Phil. Trans. Roy. Soc. London Ser. A, 238, 423–451.

    Google Scholar 

  • Wright, E. M. [1940b], “The Asymptotic Expansion of the Generalized Hypergeometric Function”, Proc. London Math. Soc., (2), 46, 389–408.

    Google Scholar 

  • Wright, E. M. [1940c], “The Generalized Bessel Function of Order Greater than One”, Quart. J. Math., (2), 11, 36–48.

    Google Scholar 

  • Wright, E. M. [1941], “The Asymptotic Expansion of Integral Functions Defined by Taylor Series”, Phil. Trans. Roy. Soc. London Ser. A, 239, 217–232.

    Google Scholar 

  • Zwaan, A. [1929], “Intensitäten im Ca Funkenspectrum”, Thesis, Utrecht.

Further Bibliography

  • Braaksma, B. L. J. [1971], “Asymptotic Analysis of a Differential Equation of Turritin”, SIAM J. Math. Anal., 2, 1–16.

    Google Scholar 

  • Butuzov, V. F., Vasil'eva, A. B., & Fedoryuk, M. V. [1970], “Asymptotic Methods in the Theory of Ordinary Differential Equations”, appearing in Progress in Mathematics, vol. 8: Mathematical Analysis, R. V. Gamkrelidze, ed., pp. 1–82, Plenum Press, New York-London.

    Google Scholar 

  • Dorodynitsyn, A. A. [1952], “Asymptotic Distribution Laws for the Eigenvalues of Some Special Forms of Second Order Differential Equations”, Usp. Matem. Nauk., 7, 3–96.

    Google Scholar 

  • Kiyek, K. [1963], “Zur Theorie der linearen Differentialgleichungssysteme mit einem großen Parameter”, Inaugurald-Dissertation zur Erlangung der Doktorwürde der Hohen Naturwissenschaftlichen Fakultät der Julius-Maximilians-Universität Würzburg, Würzburg.

    Google Scholar 

  • Kohno, M. [1966], “A Two-Point Connection Problem Involving Logarithmic Polynomials”, Publications Res. Inst. Math. Sci., A2, 269–305.

    Google Scholar 

  • Narayan, J., & Stengle, G. [1971], “Uniform Asymptotic Splitting of Linear Differential Equations”, appearing in Analytic Theory of Differential Equations, Lecture Notes in Mathematics, No. 183, 170–177, Springer-Verlag, New York.

    Google Scholar 

  • Nishimoto, T. [1970], “On the Central Connection Problem at a Turning Point”, Kōdai Math. Sem. Rep., 22, 30–44.

    Google Scholar 

  • Saito, T. [1959], “The W.K.B. Method for the Differential Equations of the Fourth Order”, J. Phys. Soc. Japan, 14, 1816–1819.

    Google Scholar 

  • Thorne, R. C. [1960], “Asymptotic Formulae for Solutions of Linear Second Order Differential Equations with a Large Parameter”, J. Austral. Math. Soc., 1, 439–464.

    Google Scholar 

  • Turrittin, H. L. [1971], “Stokes Multipliers for the Equations y‴−y/x 2=0″, appearing in Analytic Theory of Differential Equations, Lecture Notes in Mathematics, No. 183, 145–157, Springer-Verlag, New York.

    Google Scholar 

  • Wasow, W. [1971], “The Central Connection Problem at Turning Points of Linear Differential Equations”, appearing in Analytic Theory of Differential Equations, No. 183, 158–164, Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Morris Kline

Rights and permissions

Reprints and permissions

About this article

Cite this article

McHugh, J.A.M. An historical survey of ordinary linear differential equations with a large parameter and turning points. Arch. Rational Mech. 7, 277–324 (1971). https://doi.org/10.1007/BF00328046

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00328046

Keywords

Navigation