Skip to main content
Log in

Expression of bacterial genes involved in maltose metabolism

  • Special Topic Review: Control of Gene Expression Microorganisms. Edited by Miguel Vicente
  • Special Topic Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recent advances in the knowledge of the maltose regulons of enteric bacteria have increased the number and complexity of factors involved both in gene expression and metabolite uptake by the cell. The transcription activation performed by the MalT protein and the CRP-cAMP complex have been found to be connected with several regulation pathways implicated in sugar transport and adaptation ot changes in osmolarity in the cell environment. In contrast to the positive regulation in enteric bacteria, the control of the maltose system in the Gram-positive bacterium Streptococcus pneumoniae may represent a more rudimentary scheme in which a classical repressor protein, MalR, regulates expression of the maltose operons. Considering the different mechanisms of transcription regulation proposed for these homologous systems, the maltose regulon of S. pneumoniae appears to be specially useful as a model to study the changes that may have taken place, both in gene organization and control of gene expression, to lead to divergent mechanisms of transcription regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhya, S. & Garges, S. 1990 Positive control. Journal of Biological Chemistry 265, 10797–10800.

    Google Scholar 

  • Bloch, M.-A. & Raibaud, O. 1986 Comparison of the malA regions of Escherichia coli and Klebsiella pneumoniae. Journal of Bacteriology 168, 1220–1227.

    Google Scholar 

  • Bukau, B., Ehrmann, M. & Boos, W. 1986 The osmoregulation of the maltose regulon in Escherichia coli. Journal of Bacteriology 166, 884–891.

    Google Scholar 

  • Chapon, C. & Kolb, A. 1983 Action of CAP on the malT promoter in vitro. Journal of Bacteriology 156, 1135–1143.

    Google Scholar 

  • Dassa, E. & Hofnung, M. 1985 Sequence of gene malG in E. coli K12: homologies between integral membrane components from binding protein-dependent transport systems. EMBO Journal 4, 2287–2293.

    Google Scholar 

  • Dean, D.A., Reizer, J., Nikaido, H. & Saier, M.H. 1990 Regulation of the maltose transport system of Escherichia coli by the glucose-specific enzyme III of the phosphoenolpyruvate-sugar phosphotransferase system. Journal of Biological Chemistry 265, 21005–21010.

    Google Scholar 

  • DeCrombrugghe, B., Busby, S. & Buc, H. 1984 Cyclic AMP receptor protein: role in transcription activation. Science 224, 831–838.

    Google Scholar 

  • D'Enfert, C., ryter, A. & Pugsley, A.P. 1987 Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of lipoprotein pullulanase. EMBO Journal 6, 3531–3538.

    Google Scholar 

  • Duplay, P., Bedouelle, H., Fowler, A., Zabin, I., Saurin, W. & Hofnung, M. 1984 Sequences of the malE gene and of its product, the maltose-binding protein of Escherichia coli K12. Journal of Biological Chemistry 259, 10606–10613.

    Google Scholar 

  • Ehrmann, M. & Boos, W. 1987 Identification of endogenous inducers of the mal regulon in Escherichia coli. Journal of Bacteriology 169, 3539–3545.

    Google Scholar 

  • Freundlieb, S. & Boos, W. 1986 Alpha-amylase of Escherichia coli, mapping and cloning of the structural gene, malS and identification of its products a periplasmic protein. Journal of Biological Chemistry 261, 2946–2954.

    Google Scholar 

  • Froshauer, S. & Beckwith, J. 1984 The nucleotide sequence of the gene for malF protein, an inner membrane component of the maltose transport system of Escherichia coli. Journal of Biological Chemistry 259, 10896–10903.

    Google Scholar 

  • Gilson, E., Alloing, G., Schmidt, T., Claverys, J.-P., Dudler, R. & Hofnung, M. 1988 Evidence of high affinity binding-protein dependent transport systems in Gram-positive bacteria and in Mycoplasma. EMBO Journal 7, 3971–3974.

    Google Scholar 

  • Gilson, E., Rousset, J.-P., Charbit, A., Perrin, D. & Hofnung, M. 1986 malM a new gene of the maltose regulon in Escherichia coli K12. Journal of Molecular Biology 191, 303–311.

    Google Scholar 

  • Hanamura, A. & Aiba, H. 1991 Molecular mechanism of negative autoregulation of Escherichia coli crp gene. Nucleic Acids Research 19, 4413–4419.

    Google Scholar 

  • Herendeen, D.R., Kassavetis, G.A., Barry, J., Alberts, B.M. & Geiduscheck, E.P. 1989 Enhancement of bacteriophage T4 late transcription by components of the T4 DNA replication apparatus. Science 245, 952–958.

    Google Scholar 

  • Kuhnau, S., Reyes, M., Sievertsen, A., Shuman, H.A. & Boos, W. 1991 The activities of the Escherichia coli MalK protein in maltose transport, regulation and inducer exclusion can be separated by mutations. Journal of Bacteriology 173, 2180–2186.

    Google Scholar 

  • Lacks, S.A. 1968 Genetic regulation of maltosaccharide utilization in Pneumococcus. Genetics 60, 685–706.

    Google Scholar 

  • Lacks, S.A., Dunn, J.J. & Greeberg, B. 1982 Identification of base mismatches recognized by the heteroduplex-DNA-repair system of Streptococcus pneumoniae. Cell 31, 327–336.

    Google Scholar 

  • Oskouian, B. & Stewart, G.C. 1990 Repression and catabolite repression of the lactose operon of Staphylococcus aureus. Journal of Bacteriology 172, 3804–3812.

    Google Scholar 

  • Palm, D., Goerl, R., Burger, K.J., Bühner & Schwartz, M. 1983 DNA sequence of the malP gene and primary structure of E. coli maltodextrin phosphorylase. In Chemical and Biological Aspects of Vitamin B6 Catalysis ed. Evangelopoulos, A.E. pp. 209–229. New York: A.R. Liss.

    Google Scholar 

  • Pérez-Martin, J. & Espinosa, M. 1991 The RepA repressor can act as a transcriptional activator by DNA-induced bend. EMBO Journal 10, 1375–1382.

    Google Scholar 

  • Ptashne, M.A. 1986 A Genetic Switch. Cambridge MA: Cell Press and Blackwell Scientific.

    Google Scholar 

  • Pugsley, A.P. & Dubreuil, C. 1988 Molecular characterization of malQ the structural gene for the Escherichia coli enzyme amylomaltase. Molecular Microbiology 2, 473–479.

    Google Scholar 

  • Puyet, A. & Espinosa, M. 1993 Structure of the Maltodextrin-uptake Locus of Streptococcus pneumoniae. Correlation to the Escherichia coli Maltose regulon. Journal of Molecular Biology 230, 800–811.

    Google Scholar 

  • Puyet, A., Greenberg, B. & Lacks, S.A. 1990 Genetic and structural characterization of EndA, a membrane-bound nuclease required for transformation of Streptococcus pneumoniae. Journal of Molecular Biology 213, 727–738.

    Google Scholar 

  • Raibaud, O. & Richet, E. 1987 Maltotriose is the inducer of the maltose regulon of Escherichia coli. Journal of Bacteriology 169, 3059–3061.

    Google Scholar 

  • Raibaud, O., Vidal-Ingigliardi, D. & Richet, E. 1989 A complex nucleoprotein structure involved in activation of transcription of two divergent Escherichia coli promoters. Journal of Molecular Biology 205, 471–485.

    Google Scholar 

  • Reidl, J. & Boos, W. 1991 The malX malY operon of Escherichia coli encodes a novel enzyme II of the phosphotransferase system recognizing glucose and maltose and an enzyme abolishing the endogenous induction of the maltose system. Journal of Bacteriology 173, 4862–4876.

    Google Scholar 

  • Reidl, J., Römish, K., Ehrmann, M. & Boos, W. 1989 Mall, a novel protein involved in regulation of the maltose system of Escherichia coli, is highly homologous to the repressor proteins GalR, CytR and LacL. Journal of Bacteriology 171, 4888–4899.

    Google Scholar 

  • Richet, E. & Raibaud, O. 1989 MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator. EMBO Journal 8, 981–987.

    Google Scholar 

  • Richet, E. & Ribaud, O. 1991 Supercoiling is essential for the formation and stability of the initiation complex at the divergent malEp and malKp promoters. Journal of Molecular Biology 218, 529–542.

    Google Scholar 

  • Richet, E., Vidal-Ingigliardi, D. & Raibaud, O. 1991 A new mechanism for coactivation of transcription initiation: repositioning of an activator triggered by the binding of a second activaton. Cell 66, 1185–1195.

    Google Scholar 

  • Saier, M.H.Jr 1989 Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate-sugar phosphotransferase system. Microbiological Reviews 53, 109–120.

    Google Scholar 

  • Schneider, E., Bishop, L., Schneider, E., Alfandary, V. & Ames, G.F.L. 1989 Fine-structure genetic map of the maltose transport operon of Salmonella typhimurium. Journal of Bacteriology 171, 5860–5865.

    Google Scholar 

  • Schneier, E., Francoz, E. & Dassa, E. 1992 Completion of the nucleotide sequence of the “maltose B” region in Salmonella typhimurium: the high conservation of the malM gene suggests a selected physiological role for its product. Biochimica et Biophysica Acta 1129, 223–227.

    Google Scholar 

  • Schwatz, M. 1983 Phage λ receptor (LamB protein) in Escherichia coli Methods in Enzymology 97, 100–112.

    Google Scholar 

  • Schwartz, M. 1987 The maltose regulon. In Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, (eds) Neidhardt, F.C., Ingraham, J.L., Low, K.B., Magasanik, B., Schaechter, M. & Umbarger, H.E. pp. 1482–1502. Washington DC: American Society for Microbiology.

    Google Scholar 

  • Stassi, D.L., López, P., Espinosa, M. & Lacks, S.A. 1981 Cloning of chromosomal genes in Streptococcus pneumoniae. Proceedings of the National Academy of Sciences of the United States of America 78, 7028–7032.

    Google Scholar 

  • Strom, A.R., Falkenberg, P. & Landfald, B. 1986 Genetics of osmoregulation in Escherichia coli. Uptake and biosynthesis of organic osmolytes FEMS Microbiology Reviews 39, 79–86.

    Google Scholar 

  • Tapio, S., Yeh, F., Shuman, H.A. & Boos, W. 1991 The malZ gene of Escherichia coli, a member of the maltose regulon, encodes a maltodextrin glucosidase. Journal of Biological Chemistry 266, 19450–19458.

    Google Scholar 

  • Ulmann, A. & Danchin, A. 1983 Role of cyclic AMP in bacteria. Advances in Cyclic Nucleotide Research 15, 1–53.

    Google Scholar 

  • Vidal-Ingigliardi, D., Richet, E. & Raibaud, O. 1991 Two MalT binding sites in direct repeat. Journal of Molecular Biology 218, 323–334.

    Google Scholar 

  • Weickert, M.J. & Chambliss, G.H. 1990 Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. Proceedings of the National Academy of Sciences of the United States of America 87, 6238–6242.

    Google Scholar 

  • Weiss, D.S., Batut, L., Klose, K.E., Keener, J. & Kutsu, S. 1991 The phosphorylated form of the enhancer-binding protein NTRC has an ATPase activity that is essential for activation of transcription. Cell 67, 155–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puyet, A. Expression of bacterial genes involved in maltose metabolism. World Journal of Microbiology and Biotechnology 9, 455–460 (1993). https://doi.org/10.1007/BF00328033

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00328033

Key words

Navigation