Skip to main content
Log in

Gene expression in Pseudomonas

  • Special Topic Review: Control of Gene Expression Microorganisms. Edited by Miguel Vicente
  • Special Topic Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Gene regulation studies in pseudomonad bacteria are mainly restricted to Pseudomonas aeruginosa and Pseudomonas putida. Constitutive promoters exhibit DNA sequences similar to the σ 70-dependent constitutive promoters of Escherichia coli. The TOL meta-cleavage pathway operon promoter and the nah operon promoters are the best characterized σ 70-dependent promoters, which exhibit-10 regions rich in As and Ts and non-conserved-35 regions. The DNA binding motif recognized by the respective positive regulators lies between-40 and-80. Another set of positively controlled promoters exhibit upstream activator sequences located between-100 and-500. Transcription stimulation from some of these promoters also involves σ 54 and/or IHF protein. In this class of promoters, DNA binding is required to establish open complexes. Promoters for the utilization of histidine (hut) are under negative control by the HutC protein. hut promoters exhibit-10/-35 consensus regions and an overlapping operator sequence between-15 and-50. Repression of hut promoters seems to be achieved through steric hindrance of RNA polymerase. Another set of promoters are controlled by catabolite repression, which seems to be cyclic-AMP independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abril, M.A., Buck, M. & Ramos, J.L. 1991 Activation of the Pseudomonas TOL plasmid upper pathway operon. Journal of Biological Chemistry 266, 15832–15838.

    Google Scholar 

  • Abril, M.A., Michán, C., Timmis, K.N. & Ramos, J.L. 1989 Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. Journal of Bacteriology 171, 6782–6790.

    Google Scholar 

  • Abril, M.A. & Ramos, J.L. 1993 Physical organization of the Pseudomonas TOL plasmid upper pathway operon promoter. Sequence and positional requirements for XylR-dependent activation of transcription. Molecular and General Genetics, in press.

  • Berry, A., DeVault, J.D. & Chakrabarty, A.M. 1989 High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. Journal of Bacteriology 171, 2312–2317.

    Google Scholar 

  • Collado-Vides, J., Magasanik, B. & Gralla, J.D. 1991 Control site location and transcriptional regulation in Escherichia coli. Microbiological Reviews 55, 371–394.

    Google Scholar 

  • Chang, M., Hadero, A. & Crawford, I. 1989 Sequence of the Pseudomonas aeruginosa trpI activator gene and relatedness of trpI to other procaryotic regulatory genes. Journal of Bacteriology 171, 172–183.

    Google Scholar 

  • deLorenzo, V., Herrero, M., Metzke, M. & Timmis, K.N. 1991 An upstream xylR and IHF induced nucleoprotein complex regulates the sigma-54 dependent Pu promoter of TOL plasmid. EMBO Journal 10, 1159–1167.

    Google Scholar 

  • Deretic, V., Dikshit, R., Konyecsni, W.M., Chakrabarty, A.M. & Misra, K.T. 1989a The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. Journal of Bacteriology 171, 1278–1283.

    Google Scholar 

  • Deretic, V., Gill, J.F. & Chakrabarty, A.M. 1987 Alginate biosynthesis: a model system for gene regulation and function in Pseudomonas. Bio/Technology 5, 469–477.

    Google Scholar 

  • Deretic, V., Govan, J.R.W., Konyecsni, W.M. & Martin, D.W. 1990 Mucoid Pseudomonas aeruginosa in cystic fibrosis: mutations in the muc loci affect transcription of the algR and algD genes in response to environmental stimuli. Molecular Microbiology 4, 189–196.

    Google Scholar 

  • Deretic, V. & Konyecsni, W.M. 1989 Control of mucoidy in Pseudomonas aeruginosa: transcriptional regulation of algR and identification of the second regulatory gene, algQ. Journal of Bacteriology 171, 3680–3688.

    Google Scholar 

  • Deretic, V., Konyescni, W.M., Mohr, C.D., Martin, D.W. & Hibler, N.S. 1989b Common denominators of promoter control in Pseudomonas and other bacteria. Bio/Technology 7, 1249–1254.

    Google Scholar 

  • Deretic, V., Leveau, J.H.J., Mohr, C.D. & Hibler, N.S. 1992 In vivo phosphorylation of AlgR, a regulator of mucoidy in Pseudomonas aeruginosa, by a histidine protein kinase and effects of small phospho-donor molecules. Molecular Microbiology 6, 2761–2768.

    Google Scholar 

  • Deretic, V., Mohr, C.D. & Martin, D.W. 1991 Mucoid Pseudomonas aeruginosa in cystic fibrosis: signal transduction and histone-like elements in the regulation of bacterial virulence. Molecular Microbiology 5, 1577–1583.

    Google Scholar 

  • Dixon, R. 1986 The xy/ABC promoter from the Pseudomonas putida TOL plasmid is activated by nitrogen regulatory genes in Escherichia coli. Molecular and General Genetics 203, 129–136.

    Google Scholar 

  • Duchene, M., Schweizer, A., Lottspeich, F., Krauss, G., Marget, M, Vogel, K., VonSpecht, B.U. & Domdey, H. 1988 Sequence and transcriptional start site of the Pseudomonas aeruginosa outer membrane porin protein F. Journal of Bacteriology 170, 155–162.

    Google Scholar 

  • Flynn, J.L. & Ohman, D.E. 1988 Use of a gene replacement cosmid vector for cloning alginate conversion genes from mucoid and nonmucoid Pseudomonas aeruginosa strains: algS controls expression of algT. Journal of Bacteriology 170, 3228–3236.

    Google Scholar 

  • Franklin, F.C.H., Bagdasarian, M., Bagdasarian, M.M. & Timmis, K.N. 1981 Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta-cleavage pathway. Proceedings of the National Academy of Sciences of the United States of America 78, 7458–7462.

    Google Scholar 

  • Franklin, F.C.H., Lehrbach, P.R., Lurz, R., Rückert, B., Bagdasarian, M. & Timmis, K.T. 1983 Localization and functional analysis of transposon mutations in regulatory genes of the TOL catabolic pathway. Journal of Bacteriology 154, 676–685.

    Google Scholar 

  • Gaffney, T.D., DaCosta e Silva, O., Yamada, T. & Kosuge, T. 1990 Indoleacetic acid operon of Pseudomonas syringae subsp. savastanoi: transcription analysis and promoter identification. Journal of Bacteriology 172, 5593–5601.

    Google Scholar 

  • Gallegos, M.T., Michán, C. & Ramos, J.L. 1993. The XylS/AraC family of regulators. Nucleic Acids Research 21, 807–810.

    Google Scholar 

  • Gao, J. & Gussin, G.N. 1991 RNA polymerase from Pseudomonas aeruginosa and Pseudomonas syringae respond to Escherichia coli activator proteins. Journal of Bacteriology 173, 394–397.

    Google Scholar 

  • Harayama, S., Lerbach, P.R. & Timmis, K.N. 1984 Transposon mutagenesis analysis of the meta-cleavage pathway operon genes of the TOL plasmid of Pseudomonas putida mt-2. Journal of Bacteriology 160, 251–255.

    Google Scholar 

  • Harayama, S. & Rekik, M. 1990 The meta cleavage operon of TOL degradative plasmid pWWO comprises 13 genes. Molecular and General Genetics 221, 113–120.

    Google Scholar 

  • Harayama, S., Rekik, M., Wubbolts, M., Rose, K., Leppik, R.A. & Timmis, K.N. 1989 Characterization of five genes in the upper-pathway operon of TOL plasmid of pWWO from Pseudomonas putida and identification of the gene products. Journal of Bacteriology 171, 5048–5055.

    Google Scholar 

  • Harayama, S. & Timmis, K.T. 1989 Catabolism of aromatic hydrocarbons by Pseudomonas. In Genetics of Bacterial Diversity, eds Hopwood, D. & Chater, F. pp. 151–174. London: Academic Press.

    Google Scholar 

  • Holtel, A., Timmis, K.T. & Ramos, J.L. 1992 Upstream binding sequences of the XylR activator protein and integration host factor in the xylS gene promoter region of the Pseudomonas TOL plasmid. Nucleic Acids Research 20, 1755–1762.

    Google Scholar 

  • Hu, L., Allison, S.L. & Phillips, A.T. 1989 Identification of multiple repressor recognition sites in the hut system of Pseudomonas putida. Journal of Bacteriology 171, 4189–4195.

    Google Scholar 

  • Hu, L. & Phillips, A.T. 1988 Organization and multiple regulation of histidine utilization genes in Pseudomonas putida. Journal of Bacteriology 170, 4272–4279.

    Google Scholar 

  • Inouye, S., Ebina, Y., Nakazawa, A. & Nakazawa, T. 1984b Nucleotide sequence surrounding transcription initiation site of xylABC operon on TOL plasmid of Pseudomonas putida. Proceedings of the National Academy of Sciences of the United States of America. 81, 1688–1691.

    Google Scholar 

  • Inouye, S., Gomada, M., Sangodkar, U.M.X., Nakazawa, A. & Nakazawa, T. 1990 Upstream regulatory sequence for transcriptional activator sylR in the first operon of xylene metabolism on the TOL plasmid. Journal of Molecular Biology 216, 251–260.

    Google Scholar 

  • Inouye, S., Nakazawa, A. & Nakazawa, T. 1981 Molecular cloning of gene xylS of the TOL plasmid: evidence for positive regulation of the xylDEGF operon by xylS. Journal of Bacteriology 148, 413–418.

    Google Scholar 

  • Inouye, S., Nakazawa, A. & Nakazawa, T. 1983 Molecular cloning of regulatory gene xylR and operator-promoter regions of the xylABC and xylDEGF operon of the TOL plasmid. Journal of Bacteriology 155, 1192–1199.

    Google Scholar 

  • Inouye, S., Nakazawa, A. and Nakazawa, T. 1984a Nucleotide sequence of the promoter region of the xylDEGF operon on TOL plasmid of Pseudomonas putida. Gene 29, 323–330.

    Google Scholar 

  • Inouye, S., Nakazawa, A. & Nakazawa, T. 1985 Determination of the transcription initiation site and identification of the protein product of the regulatory gene xylR for xyl operons on the TOL plasmid. Journal of Bacteriology 163, 863–869.

    Google Scholar 

  • Inouye, S., Nakazawa, A. & Nakazawa, T. 1986 Nucleotide sequence of the regulatory gene xylS on the Pseudomonas putida TOL plasmid and identification of the protein product. Gene 44, 235–242.

    Google Scholar 

  • Inouye, S., Nakazawa, A. & Nakazawa, T. 1987 Expression of the regulatory gene xylS on the TOL plasmid is positively controlled by the xylR gene product. Proceedings of the National Academy of Sciences of the United States of America 84, 5182–5186.

    Google Scholar 

  • Inouye, S., Nakazawa, A. & Nakazawa, T. 1988 Nucleotide sequence of the regulatory gene xylR of the TOL plasmid from Pseudomonas putida. Gene 66, 301–306.

    Google Scholar 

  • Itoh, Y., Soldati, L., Stalon, V., Falmagne, P., Terawaki, Y., Leishinger, T. & Haas, D. 1988 Anabolic ornithine carbamoyl-transferase of Pseudomonas aeruginosa: Nucleotide sequence and transcriptional control of the argF structural gene. Journal of Bacteriology 170, 2725–2734.

    Google Scholar 

  • Kato, J. & Chakrabarty, A.M. 1991 Purification of the regulatory protein AlgR1 and its binding in the far upstream region of the algD promoter in Pseudomonas aeruginosa. Proceedigns of the National Academy of Sciences of the United States of America 88, 1760–1764.

    Google Scholar 

  • Kato, J., Misra, T.K. & Chakrabarty, A.M. 1990 AlgR3, a protein resembling eukaryotic histone H1, regulates alginate synthesis in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 87, 2887–2891.

    Google Scholar 

  • Kessler, B., de Lorenzo, V., & Timmis, K.N. 1993 Identification of a cis-acting sequence within the Pm promoter of the TOL plasmid which confers XylS-mediated responsiveness to substituted benzoates. Journal of Molecular Biology, in press.

  • Kimbara, K. & Chakrabarty, A.M. 1989 Control of alginate synthesis in Pseudomonas aeruginosa: regulation of the algR1 gene. Biochemical and Biophysical Research Communications 164, 601–608.

    Google Scholar 

  • Köhler, T., Harayama, S., Ramos, J.L. & Timmis, K.N. 1989. Involvement of Pseudomonas putida rpoN sigma factor in regulation of various metabolic functions. Journal of Bacteriology 171, 4326–4333.

    Google Scholar 

  • Konyecsni, W.M. & Deretic, V. 1990 DNA sequence and expression analysis of algP and algQ, components of the multigene system transcriptionally regulating mucoidy in Pseudomonas aeruginosa: algP contains multiple direct repeats. Journal of Bacteriology 172, 2511–2520.

    Google Scholar 

  • Kustu, S., Santero, E., Keener, J., Popham, D. & Weiss, D. 1989 Expression of sigma-54(ntrA)-dependent genes is probably united by a common mechanism. Microbiological Reviews 53, 367–376.

    Google Scholar 

  • Lessie, T.G. & Phibbs, P.V. 1984 Alternative pathways of carbohydrate utilization in Pseudomonads. Annual Review of Microbiology 38, 359–387.

    Google Scholar 

  • MacGregor, C.H., Wolff, J.A., Arora, S.K. & Phibbs, J.P.V. 1991 Cloning of a catabolite repression control (crc) gene from Pseudomonas aeruginosa, expression of the gene in Escherichia coli, and identification of the gene product in Pseudomonas aeruginosa. Journal of Bacteriology 173, 7204–7212.

    Google Scholar 

  • Madhusudhan, K.T., Huang, G., Burns, G. & Sokatch, J.R. 1990 Transcriptional analysis in the promoter region of the Pseudomonas putida branched chain keto acid dehydrogenase operon. Journal of Bacteriology 172, 5655–5663.

    Google Scholar 

  • Marqués, S., Ramos, J.L. & Timmis, K.N. 1993 Analysis of the m-RNA structure of the Pseudomonas putida TOL meta fission pathway operon around the transcription initiation point and the xylE gene. Evidence for endonucleolytic cleavage. Biochimica et Biophysica Acta, submitted.

  • Mermod, N., Lehrbach, P.R., Reinecke, W. & Timmis, K.N. 1984 Transcription of the TOL plasmid toluate catabolic pathway operon of Pseudomonas putida is determined by a pair of co-ordinately and positively regulated overlapping promoters. EMBO Journal 3, 2461–2466.

    Google Scholar 

  • Mermod, N., Ramos, J.L., Bairoch, A. & Timmis, K.N. 1987 The xylS gene positive regulator of TOL plasmid pWWO: Identification, sequence analysis and overproduction leading to constitutive expression of meta cleavage operon. Molecular and General Genetics 207, 349–354.

    Google Scholar 

  • Michán, C., Kessler, B., deLorenzo, V., Timmis, K.N. & Ramos, J.L. 1992b XylS domain interactions can be deduced from intraallelic dominance in double mutants of Pseudomonas putida. Molecular and General Genetics 235, 406–412.

    Google Scholar 

  • Michán, C., Zhou, L., Gallegos, M.T., Timmis, K.N. & Ramos, J.L. 1992a Identification of critical amino-terminal regions of XylS: the positive regulator encoded by the TOL plasmid. Journal of Biological Chemistry 267, 22897–22901.

    Google Scholar 

  • Mohr, C.D., Hibler, N.S. & Deretic, V. 1991 AlgR, a response regulator controlling mucoidy in Pseudomonas aeruginosa, binds to the FUS sites of the algD promoter located unusually far upstream from the mRNA start site. Journal of Bacteriology 173, 5136–5143.

    Google Scholar 

  • Mohr, C.D., Martin, D.W., Konyecsni, W.M., Govan, J.R., Lory, S. & Deretic, V. 1990 Role of the far-upstream sites of the algD promoter and the algR and rpoN genes in environmental modulation of mucoidy in Pseudomonas aeruginosa. Journal of Bacteriology 172, 6576–6580.

    Google Scholar 

  • Ramos, J.L., Mermod, N. & Timmis, K.N. 1987 Regulatory circuits controlling transcription of TOL plasmid operon encoding meta-cleavage pathway for degradation of alkylbenzoates by Pseudomonas. Molecular Microbiology 1, 293–300.

    Google Scholar 

  • Ramos, J.L., Michán, C., Rojo, F., Dwyer, D. & Timmis, K.N. 1990a Signal-regulator interactions. Genetics analysis of the effector binding site of xylS, the benzoate-activated positive regulator of Pseudomonas TOL plasmid meta-cleavage pathway operon. Journal of Molecular Biology 211, 373–382.

    Google Scholar 

  • Ramos, J.L., Rojo, F., Zhou, L. & Timmis, K.N. 1990b A family of positive regulators related to the Pseudomonas putida TOL plasmid XylS and Escherichia coli AraC activators. Nucleic Acids Research 18, 2149–2152.

    Google Scholar 

  • Ramos, J.L., Stolz, A., Reineke, W. & Timmis, K.N. 1986 Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proceedings of the National Academy of Sciences of the United States of America 83, 8467–8471.

    Google Scholar 

  • Rothmel, R., Shinabarger, D., Parsek, M., Aldrich, T. & Chakrabarty, A.M. 1991 Functional analysis of the Pseudomonas putida regulatory protein CatR: transcriptional studies and determination of the CatR DNA-binding site by hydroxyl-radical footprinting. Journal of Bacteriology 173, 4717–4724.

    Google Scholar 

  • Sawers, R.G. 1991 Identification & molecular characterization of a transcriptional regulator from Pseudomonas aeruginosa PAO1 exhibiting structural and functional similarity to the FNR protein of Escherichia coli. Molecular Microbiology 5, 1469–1481.

    Google Scholar 

  • Schell, M.A., Brown, P.H. & Raju, S. 1990 Saturation mutagenesis to localize probable functional domains in the NahR protein, a LysR-type transcription activator. Molecular Biology 265, 3844–3850.

    Google Scholar 

  • Schell, M.A. & Sukordhaman, M. 1989 Evidence that the transcription activator encoded by the Pseudomonas putida nahR gene is evolutionarily related to the transcription activators encoded by the Rhizobium nodD genes Journal of Bacteriology 171, 1952–1959.

    Google Scholar 

  • Silver, S., Chakarbarty, A.M., Iglewski, B. & Kaplan, S. (eds) 1990 Pseudomonas: Biotransformation, Pathogenesis, and Evolving Biotechnology. Washington DC: American Society for Microbiology.

    Google Scholar 

  • Sokatch, J.R. (ed) 1986 The Biology of Pseudomonas. The Bacteria; Vol. 10. London: Academic Press.

    Google Scholar 

  • Spooner, R.A., Lindsay, K. & Franklin, F.C.H. 1986 Genetic, functional and sequence analysis of the xylR and xylS regulatory genes of the TOL plasmid pWWO. Journal of General Microbiology 132, 1347–1358.

    Google Scholar 

  • Van derMeer, J.R., Frijters, A.C.J., Leveau, J.H.J., Eggen, R.I.L., Zehnder, A.J.B. & deVos, W.M. 1991 Characterization of the Pseudomonas sp. strain P51 gene tcbR, a LysR-type transcriptional activator of the tcbCDEF chlorocatechol oxidative operon, and analysis of the regulatory region. Journal of Bacteriology 173, 3700–3708.

    Google Scholar 

  • Wolff, J.A., MacGregor, C.H., Eisenberg, R.C. & Phibbs, P.V.Jr 1991 Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO. Journal of Bacteriology 173, 4700–4606.

    Google Scholar 

  • Worsey, M.J., Franklin, F.C.H. & Williams, P.A. 1978 Regulation of the degradative pathway enzymes coded for by the TOL plasmid pWWO from Pseudomonas putida mt 2. Journal of Bacteriology 134, 757–764.

    Google Scholar 

  • Worsey, M.J. & Williams, P.A. 1975 Metabolism of toluene and xylenes by Pseudomonas putida (arvilla) mt-2: evidence for a new function of the TOL plasmid. Journal of Bacteriology 124, 7–13.

    Google Scholar 

  • Wozniak, D.J. & Ohman, D.E. 1991 Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription. Journal of Bacteriology 173, 1406–1413.

    Google Scholar 

  • Zhou, L., Timmis, K.N. & Ramos, J.L. 1990 Mutations leading to constitutive expression from the TOL plasmid meta-cleavage pathway operon are located at the C-terminal end of the positive regulator protein XylS. Journal of Bacteriology 172, 3707–3710.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof Manuel Losada, on the 25th anniversary of the Department of Biochemistry, Faculty of Biology, Seville, where the authors studied for their doctorates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, J.L., Marqués, S. Gene expression in Pseudomonas . World Journal of Microbiology and Biotechnology 9, 433–443 (1993). https://doi.org/10.1007/BF00328031

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00328031

Key words

Navigation