Advertisement

Chromosoma

, Volume 59, Issue 4, pp 341–393 | Cite as

Karyotype evolution in Australian ants

  • Hirotami T. Imai
  • Ross H. Crozier
  • Robert W. Taylor
Article

Abstract

105 Australian ant species, including members of the important primitive genera Amblyopone and Myrmecia, were karyotyped using a C-banding air-drying technique. The observed haploid numbers in this survey ranged from 2n=84 (the highest known in the Hymenoptera) to 2n=9. Seven types of chromosome rearrangement were detected, namely: Robertsonian rearrangements, pericentric inversions, saltatory changes in constitutive heterochromatin, simple reciprocal translocations, complex translocations accompanied by significant loss of euchromatin, supernumerary (B-) chromosome variation, and chromosome deletion. Most ant karyotype evolution is explicable in terms of the first three of these. No evidence was found for polyploidy or centric dissociation being of evolutionary significance in ants. The C-band analysis supports a model in which pericentric inversions converting acrocentrics to other types greatly predominate over those with reverse effects. There appears to be little, if any, correlation between whether a species is morphologically primitive or advanced and its karyotype organization. The data provide little support for the ancestral chromosome number in ants having been high with subsequent reduction (“fusion hypothesis”), but rather suggest that the ancestral number was either very low with subsequent increase (“fission hypothesis”) or coincident with the present mode (“modal hypothesis”). Moreover, for these ant data, the modal hypothesis is interpretable as a subset of the fission hypothesis.

Keywords

Pericentric Inversion Constitutive Heterochromatin Karyotype Evolution Modal Hypothesis Haploid Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous: Palindromes in eukaryotic DNA. Nature (Lond.) 248, 733–734 (1974)Google Scholar
  2. Bostock, C.: Repetitious DNA. In: Advanc. Cell Biology (D.M. Prescott, L. Goldstern and E. McConkey, eds.) 2, 153–223 (1971)Google Scholar
  3. Bradshaw, W.W., Hsu, T.C.: Chromosomes of Peromyscus (Rodentia, Cricetidae) III. Polymorphism in Peromyscus maniculatus. Cytogenetics 11, 436–451 (1972)Google Scholar
  4. Bridges, C.B.: The bar “gene” a duplication. Science 83, 210–211 (1936)Google Scholar
  5. Britten, R.J., Kohne, D.E.: Implications of repeated nucleotide sequences. In: Handbook of molecular cytology (A. Lima-de-Faria, ed.), pp. 37–51. Amsterdam: North-Holland Publ. Comp. 1969Google Scholar
  6. Brown, W.L.: Revisionary notes on the ant genus Myrmecia of Australia. Bull. Mus. comp. Zool. Harvard 111, 1–35 (1953)Google Scholar
  7. Brown, W.L.: A review of the ants of New Zealand (Hymenoptera). Acta Hymenopterologica 1, 1–50 (1958)Google Scholar
  8. Brown, W.L., Taylor, R.W.: Superfamily Formicoidea. In: The insects of Australia (I.M. Mackerras ed.), pp. 951–959. Melbourne: Melbourne Univ. Press 1970Google Scholar
  9. Cavalier-Smith, T.: Palindromic base sequences and replication of eukaryote chromosome ends. Nature (Lond.) 250, 467–470 (1974)Google Scholar
  10. Church, R.B., Ryskov, A.P., Georgiev, G.P.: Structure of nuclear pre-mRNA. VI. “Reverse repeats” in animal DNA and their hybridization with double-stranded regions of pre-mRNA. Molek. Biologiya 8, 503–509 (1974)Google Scholar
  11. Clark, J.: The Formicidae of Australia. I. Subfamily Myrmeciinae. Melbourne: C.S.I.R.O. 1951Google Scholar
  12. Cooper, K.W.: Cytogenetic analysis of major heterochromatic elements (especially Xh and Y) in Drosophila melanogaster, and the theory of “heterochromatin”. Chromosoma (Berl.) 10, 535–588 (1959)Google Scholar
  13. Crozier, R.H.: An acetic acid dissociation, air-drying technique for insect chromosomes, with aceto-lactic orcein staining. Stain Technol. 43, 171–173 (1968a)Google Scholar
  14. Crozier, R.H.: Cytotaxonomic studies on some Australian Dolichoderine ants (Hymenoptera: Formicidae). Caryologia (Firenze) 21, 241–259 (1968b)Google Scholar
  15. Crozier, R.H.: Chromosome number polymorphism in an Australian ponerine ant. Canad. J. Genet. Cytol. 11, 333–339 (1969)Google Scholar
  16. Crozier, R.H.: Karyotypes of twenty-one ant species (Hymenoptera; Formicidae), with reviews of the known ant karyotypes. Canad. J. Genet. Cytol. 12, 109–128 (1970a)Google Scholar
  17. Crozier, R.H.: Pericentric rearrangement polymorphism in a North American dolichoderine ant (Hymenoptera: Formicidae). Canad. J. Genet. Cytol. 12, 541–546 (1970b)Google Scholar
  18. Crozier, R.H.: Hymenoptera. Animal cytogenetics (B. John, ed.), vol. 3. Insecta 7. Berlin, Stuttgart: Gebrüder Borntraeger 1975Google Scholar
  19. Crozier, R.H.: Genetic differentiation between populations of the ant Aphaenogaster “rudis” in the southeastern United States. Genetica (den Haag) 46, (in press)Google Scholar
  20. Flamm, W.G.: Highly repetitive sequences of DNA in chromosomes. Int. Rev. Cytol. 32, 1–51 (1972)Google Scholar
  21. Forel, A.: Formicides australiens reçus de MM. Froggatt et Rowland Turner. Rev. Suisse Zool. 18, 1–94 (1910)Google Scholar
  22. Hsu, T.C.: Chromosome structure a possible function of constitutive heterochromatin: The bodyguard hypothesis. Genetics 79, 137–150 (1975)Google Scholar
  23. Hsu, T.C., Arrighi, F.E.: Distribution of constitutive heterochromatin in mammalian chromosomes. Chromosoma (Berl.) 34, 243–253 (1971)Google Scholar
  24. Imai, H.T.: Proposal of a new criterion for the classification of mammalian chromosomes. Ann. Rep. Nat. Inst. Genetics (Japan) No. 23, 50–52 (1973)Google Scholar
  25. Imai, H.T.: B-chromosomes in the myrmicine ant, Leptothorax spinosior. Chromosoma (Berl.) 45, 431–444 (1974)Google Scholar
  26. Imai, H.T.: Evidence for non-random localization of the centromere on mammalian chromosomes. J. theor. Biol. 49, 111–123 (1975)Google Scholar
  27. Imai, H.T.: Further evidence and biological significance for non-random localization of the centromere on mammalian chromosomes. J. theor. Biol. 61 (in press 1976)Google Scholar
  28. Imai, H.T., Kubota, M.: Karyological studies of Japanese ants (Hymenoptera, Formicidae). III. Chromosoma (Berl.) 37, 193–200 (1972)Google Scholar
  29. Imai, H.T., Kubota, M.: Chromosome polymorphism in the ant, Pheidole nodus. Chromosoma (Berl.) 51, 391–399 (1975)Google Scholar
  30. John, B., Freeman, M.: Causes and consequences of Robertsonian exchange. Chromosoma (Berl.) 52, 123–136 (1975)Google Scholar
  31. John, B., Hewitt, G.M.: Karyotype stability and DNA variability in the Acrididae. Chromosoma (Berl.) 20, 155–172 (1966)Google Scholar
  32. John, B., Hewitt, G.M.: Patterns and pathways of chromosome evolution within the Orthoptera. Chromosoma (Berl.) 25, 40–74 (1968)Google Scholar
  33. Keyl, H.-G.: Duplikationen von Untereinheiten der chromosomalen DNS während der Evolution von Chironomus thummi. Chromosoma (Berl.) 17, 139–180 (1965)Google Scholar
  34. Levan, A., Fredga, K., Sandberg, A.A.: Nomenclature for centromeric position on chromosomes. Hereditas (Lund) 52, 201–220 (1964)Google Scholar
  35. Maruyama, T., Imai, H.T.: Karyotype evolution as a stochastic process. 45th Annual Meeting Zool. Soc. Japan, Sapporo 1974Google Scholar
  36. Matthey, R.: The chromosome formulae of eutherian mammals. In: Cytotaxonomy and vertebrate evolution (A.B. Chiarelli and E. Capanna, eds.), pp. 531–616. London: Academic Press 1973Google Scholar
  37. Pardue, M.L., Gall, J.G.: Chromosomal localization of mouse satellite DNA. Science 168, 1356–1358 (1970)Google Scholar
  38. Patterson, J.T., Stone, W.S.: Evolution in the genus Drosophila. New York: Macmillan 1952Google Scholar
  39. Ritossa, F.: Crossing-over between X and Y chromosomes during ribosomal DNA magnification in Drosophila melanogaster. Proc. nat. Acad. Sci. (Wash.) 70, 1950–1954 (1973)Google Scholar
  40. Schmid, C.W., Manning, J.E., Davidson, N.: Inverted repeat sequences in the Drosophila genome. Cell 5, 159–172 (1975)Google Scholar
  41. Simpson, G.G.: The major features of evolution. New York: Columbia University Press 1953Google Scholar
  42. Stanley, S.M.: An explanation for Cope's rule. Evolution (Lawrence, Kans.) 27, 1–26 (1973)Google Scholar
  43. Thomas, C.A., Pyeritz, R.E., Wilson, D.A., Dancis, B.M., Lee, C.S., Bick, M.D., Huang, H.L., Zimm, B.H.: Cyclodromes and palindromes in chromosomes. Cold Spr. Harb. Symp. quant. Biol. 38, 353–370 (1973)Google Scholar
  44. Todd, N.B.: Karyotypic fissioning and canid phylogeny. J. theor. Biol. 26, 445–480 (1970)Google Scholar
  45. Wallace, B., Kass, T.L.: On the structure of gene control regions. Genetics 77, 541–558 (1974)Google Scholar
  46. Wheeler, W.M.: Ants. Their structure, development and behavior. New York: Columbia Univ. Press 1965Google Scholar
  47. White, M.J.D.: Animal cytology and evolution, 3rd ed. London: Cambridge University Press 1973Google Scholar
  48. Wilson, A.C., Bush, G.L., Case, S.M., King, M.-C.: Social structuring of mammalian populations and rate of chromosomal evolution. Proc. nat. Acad. Sci. (Wash.) 72, 5061–5065 (1975)Google Scholar
  49. Wilson, D.A., Thomas, C.A., Jr.: Palindromes in chromosomes. J. molec. Biol. 84, 115–144 (1974)Google Scholar
  50. Wilson, E.O.: The insect societies. Cambridge, Massachusetts: Harvard University Press 1971Google Scholar
  51. Yunis, J.J., Yasmineh, W.G.: Heterochromatin, satellite DNA and cell function. Science 174, 1200–1209 (1971)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Hirotami T. Imai
    • 1
  • Ross H. Crozier
    • 2
  • Robert W. Taylor
    • 3
  1. 1.Department of CytogeneticsNational Institute of GeneticsShizuoka-kenJapan
  2. 2.School of ZoologyUniversity of New South WalesKensingtonAustralia
  3. 3.Division of EntomologyC.S.I.R.O.CanberraAustralia

Personalised recommendations