Skip to main content
Log in

Evolutionary relationship between Tn21-like elements and pBP201, a plasmid from Klebsiella pneumoniae mediating resistance to gentamicin and eight other drugs

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

We have characterized pBP201 one of the plasmids from a collection of 46 strains producing adenylyltransferase ANT (2″) (Schmidt 1984). It confers resistance to sulphonamides and produces aminoglycoside adenylyltransferases AAD (3″) and ANT (2″) and β-lactamase TEM-1. Plasmid pBP201 has a size of 24.8 kilobases (kb) and contains TnA and a Tn21-related element, Tn4000Δ, with deletions in mer and the termini and a substitution at tnpR. In complementation assays with transposition-deficient mutants of Tn21 the element in pBP201 appears to be TnpA+ but TnpR-. It represents a naturally occurring defective transposon. The sequence organization of pBP201 has been compared with that of Tn21-related elements such as Tn2410, Tn2603, Tn2424, Tn1696, and Tn4000. In these transposons the integration sites of resistance genes cat, bla, aacA, aacC or aadB have been identified at two preferential locations; these are at the termini of the streptomycin resistance gene aadA. Two additional sites have been localized in the Tn21 backbone to the right of the mer operon and at res (internal resolution site) and are probably involved in the evolution of these elements. Based on these results a model for the possible genealogy of class II transposons is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avila P, De La Cruz F, Ward E, Grinsted J (1984) Plasmids containing one inverted repeat of Tn21 can fuse with other plasmids in the presence of Tn21 transposase. Mol Gen Genet, in press

  • Bachman BJ (1972) Pedigrees of some mutant strains of Escherichia coli. Bacteriol Rev 36:525–527

    Google Scholar 

  • Beneviste R, Davies J (1971) Enzymatic acetylation of aminoglycoside antibiotics by Escherichia coli carrying an R-factor. Biochemistry 10:1787–1796

    Google Scholar 

  • Beneviste R, Davies J (1973) Mechanism of antibiotic resistance to bacteria. Annu Rev Biochem 42:474–506

    Google Scholar 

  • Bennett PM, Grinsted J, Richmond MH (1977) Transposition of TnA does not generate deletions. Mol Gen Genet 154:205–212

    Google Scholar 

  • Clerget M, Chandler M, Caro L (1981) The structure of R1drd19: A revised physical map of the plasmid. Mol Gen Genet 181:183–191

    Google Scholar 

  • Cohen SN, Chang AC, Hsu L (1972) Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69:2110–2114

    Google Scholar 

  • Cornelis G, Sommer H, Saedler H (1981) Transposon Tn951 (TnLac) is defective and related to Tn3. Mol Gen Genet 184:241–248

    Google Scholar 

  • Davies J, Kagan SA (1981) Aminoglycoside antibiotics: general aspects and resistance. In: Gialdroni Grassi G, Sabath LD (eds) New trends in antibiotic research and therapy, Elsevier-North Holland Biomedical Press, Amsterdam, pp 83–94

    Google Scholar 

  • Davis RW, Simon M, Davidson N (1971) Electron microscope heteroduplex methods for mapping regions of base sequence homology in nucleic acids. In: Grosman L, Moldave K (eds) Methods in enzymology, vol. 21. Academic Press, New York, pp 413–428

    Google Scholar 

  • De La Cruz F, Grinsted J (1982) Genetic and molecular characterization of Tn21, a multiple resistance transposon from R100.1. J Bacteriol 151:222–228

    Google Scholar 

  • Diver WP, Grinsted J, Fritzinger DC, Brown NL, Altenbuchner J, Rogowsky P, Schmitt R (1983) DNA sequences of an complementation by tnpR genes of Tn21, Tn501, and Tn1721. Mol Gen Genet 191:189–193

    Google Scholar 

  • Dodd HM, Bennett P (1983) R46 encodes a site-specific recombination system interchangeable with the resolution function of TnA. Plasmid 9:247–261

    Google Scholar 

  • Fayet O, Fremont Y, Piffaretti J-C (1982) β-lactamase-specifying plasmids isolated from Neisseria gonorrhoeae have retained an intact right part of a Tn3-like transposon. J Bacteriol 149:136–144

    Google Scholar 

  • Foster TJ, Nakahara H, Weiss AA, Silver S (1979) Transposon A-generated mutations in the mercuric resistance genes of plasmid R101-1. J Bacteriol 140:167–181

    Google Scholar 

  • Grinsted J, Brown N (1984) A Tn21 terminal sequence within Tn501: complementation of tnpA gene function and transposon evolution. Submitted to MGG

  • Grinsted J, De La Cruz F, Altenbuchner J, Schmitt R (1982) Complementation of transposition of tnpA mutants of Tn3, Tn21, Tn501, and Tn1721. Plasmid 8:276–286

    Google Scholar 

  • Haas MJ, Davies J (1980) Characterization of the plasmids comprising the “R-factor” R5 and their relationship to other R plasmids. Plasmid 3:260–277

    Google Scholar 

  • Heffron F (1983) Tn3 and its relatives. In: Shapiro JA (ed) Mobile genetic elements. Academic Press, New York, pp 223–260

    Google Scholar 

  • Heffron F, McCarthy BJ, Ohtsubo H, Ohtsubo E (1979) DNA sequence analysis of the transposon Tn3: three genes and three sites involved in the transposition of Tn3. Cell 18:1135–1163

    Google Scholar 

  • Hooykaas PJJ, Den-Dulck-Ras H, Schilperoort RA (1980) Molecular mechanism of Ti-plasmid mobilization by R-plasmids: Isolation of Ti-plasmids with transposon insertions in Agrobacterium tumefaciens. Plasmid 4:64–75

    Google Scholar 

  • Katsu K, Inoue M, Mitsuhashi S (1982) Transposition of the carbenicillin-hydrolyzing beta-lactamase gene. J Bacteriol 150:483–489

    Google Scholar 

  • Kleckner N (1981) Transposable elements in procaryotes. Annu Rev Genet 15:341–404

    Google Scholar 

  • Klopfer-Kaul I (1981) Epidemiologie und molekulargenetische Grundlage des Aminoglykosidantibiotika-inaktivierenden Enzyms Adenylyltransferase ANT-(2″). Ph.D. Thesis, Rheinische Friedrich-Wilhelms Universität zu Bonn

  • Kopecko DJ, Brevet J, Cohen SN (1976) Involvement of multiple translocating DNA sequences and recombination hotspots in the structural evolution of bacterial plasmids. J Mol Biol 108:333–360

    Google Scholar 

  • Kratz J, Schmidt F, Wiedemann B (1983) Characterization of Tn2411 and Tn2410, two transposons derived from R-plasmid R1767 and related to Tn2603 and Tn21. J Bacteriol 155:1333–1342

    Google Scholar 

  • Kushner SR (1978) An improved method for transformation of Escherichia coli with Co1E1 derived plasmids. In: Boyer HW, Nicosia S (eds) Proceedings of the international symposium of genetic engineering. Elsevier-North Holland. Biomedical Press, Amsterdam, pp 17–23

    Google Scholar 

  • Matthew M, Hedges RW, Smith JT (1979) Types of β-lactamase determined by plasmids of gram-negative bacteria. J Bacteriol 138:657–662

    Google Scholar 

  • Medeiros AA, Hedges RW, Jacoby GA (1982) Spread of a “Pseudomonas-specific” β-lactamase to plasmids of enterobacteria. J Bacteriol 149:700–707

    Google Scholar 

  • Meyer JF, Nies BA, Wiedemann B (1983) Amikacin resistance mediated by multiresistance transposon Tn2424. J Bacteriol 155:755–760

    Google Scholar 

  • Miller GH, Sabatelli FJ, Hare RS, Waitz JA (1980) Survey of aminoglycoside resistance patterns. Dev. Industrial Microbiol 21:91–104

    Google Scholar 

  • Ni'Bhrihain NN, Silver S, Foster TJ (1983) Tn5 insertion mutations in the mercuric ion resistance genes derived from plasmid R100. J Bacteriol 155:690–703

    Google Scholar 

  • Nisen PD, Kopecko DJ, Chou J, Cohen SN (1977) Site specific DNA deletions occurring adjacent to the termini of a transposable ampicillin element (Tn3). J Mol Biol 117:975–998

    Google Scholar 

  • Novick RP, Clowes RC, Cohen SN, Curtiss III R, Datta N Falkow S (1976) Uniform nomenclature of bacterial plasmids: a proposal. Bacteriol Rev 40:168–189

    Google Scholar 

  • Pogue-Geile KL, Dassarma S, King SR, Jaskunas SR (1980) Recombination between bacteriophage lambda and plasmid pBR322 in Escherichia coli. J Bacteriol 142:992–1033

    Google Scholar 

  • Roberts TM, Swanberg SL, Poteete A, Riedel G, Backman K (1980) A plasmid cloning vehicle allowing a positive selection for inserted fragments. Gene 12:123–127

    Google Scholar 

  • Rownd R, Nakaya R, Nakamura A (1966) Molecular nature of the drug-resistance factors of the Enterobacteriaceae. J Mol Biol 17:376–393

    Google Scholar 

  • Rubens CE, McNeill WF, Farrer WE (1979) A transposable plasmid DNA sequence in Pseudomonas aeruginosa which mediates resistance to gentamicin and four other antimicrobial agents. J Bacteriol 129:1632–1635

    Google Scholar 

  • Rüther U (1982) pUR250 allows rapid chemical sequencing of both DNA strands of its inserts. Nucl Acids Res 10:5765–5772

    Google Scholar 

  • Ryder TB, Davison DB, Rosen JI, Ohtsubo E, Ohtsubo H (1982) Analysis of plasmid genome evolution based on nucleotide sequence comparison of two related plasmids of Escherichia coli. Gene 17:299–310

    Google Scholar 

  • Sanger F, Air GM, Barell BC, Brown NL, Coulson AR, Fiddes JC, Hutschinson III CA, Slocombe PM, Smith M (1977) Nucleotide sequence of bacteriophage ϕX174 DNA. Nature 265:687–695

    Google Scholar 

  • Schmidt F (1984) The role of insertions, deletions, and substitutions in the evolution of R6 related plasmids encoding aminoglycoside transferase ANT-(2″). Mol Gen Genet 194:248–259

    Google Scholar 

  • Schmidt F, Van Treeck U, Wiedemann B (1982) Multimerization and replication of plasmid pBP11. Plasmid 8:126–140

    Google Scholar 

  • Schmidt F, Kratz J, Wiedemann B (1983) Identification of Tn2401, a transposon encoding multiresistance to aminoglycosides. J Gen Microbiol 129:1527–1536

    Google Scholar 

  • Sharp PA, Cohen SN, Davidson N (1973) Electron microscope heteroduplex studies of sequence relations among plasmids of E. coli. II. Structure of drug resistance (R) factors and F factors. J Mol Biol 75:235–255

    Google Scholar 

  • Smith DI, Lus RG, Calvo MCR, Datta N, Jacob AE, Hedges RW (1975) Third type of plasmid conferring gentamicin resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 8:227–230

    Google Scholar 

  • Starlinger P (1980) IS elements and transposons. Plasmid 3:241–259

    Google Scholar 

  • Sutcliffe JC (1978) Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harbor Symp Quant Biol 43:77–90

    Google Scholar 

  • Timmis KN, Danbara H, Brady G, Lurz R (1981) Inheritance functions of group IncFII transmissible antibiotic resistance plasmids. Plasmid 5:53–75

    Google Scholar 

  • Tanaka M, Yamamoto T, Saway T (1983) Evolution of complex resistance transposons from an ancestral mercury transposon. J Bacteriol 153:1432–1438

    Google Scholar 

  • Van Treeck U, Schmidt F, Wiedemann B (1981) Molecular nature of a streptomycin and sulfonamide resistance plasmid (pBP1) prevalent in clinical Escherichia coli strains and integration of an ampicillin resistance transposon (TnA). Antimicrob Agents Chemother 19:371–380

    Google Scholar 

  • Vieira J, Messing J (1982) The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268

    Google Scholar 

  • Villaroel R, Hedges RW, Maenhaut R, Leemans J, Engler G, Van Montague M, Schell J (1983) Heteroduplex analysis of P-plasmid evolution: The role of insertion and deletion of transposable elements. Mol Gen Genet 189:390–399

    Google Scholar 

  • Weinstock GM, Botstein D (1979) Regional specificity of illegitimate recombination associated with the translocatable ampicillin-resistance element Tn1. Cold Spring Harbor Symp Quant Biol 43:1209–1215

    Google Scholar 

  • Wiedemann B (1983) Mechanism of antibiotic resistance and their dissemination of resistance genes in the hospital environment. Hyg Med 8:499–502

    Google Scholar 

  • Wiedemann B, Weppelmann G (1981) Aminoglykosidantibiotikamodifizierende Enzyme. Immun Infekt 9:106–112

    Google Scholar 

  • Wiedemann B, Nies BA, Meyer JF (1983) The rearrangement of resistance genes in plasmids and transposons in R1767. 5th Intern. Sympos. on Antibiot. Resistance and R plasmids: Antibiotic Resistance — Plasmids — Gene Manipulations, Smolenice. Sept. 4–8

  • Wood WB (1966) Host specificity of DNA produced by Escherichia coli: Bacterial mutations affecting the restriction and modification of DNA. J Mol Biol 169:118–133

    Google Scholar 

  • Zheng ZX, Chandler M, Hipskind R, Clerget M, Caro L (1981) Dissection of the r-determinant of the plasmid R100.1: the sequence at the extremities of Tn21. Nucleic Acids Res 9:6265–6278

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Isono

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, F., Klopfer-Kaul, I. Evolutionary relationship between Tn21-like elements and pBP201, a plasmid from Klebsiella pneumoniae mediating resistance to gentamicin and eight other drugs. Mol Gen Genet 197, 109–119 (1984). https://doi.org/10.1007/BF00327930

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327930

Keywords

Navigation