Skip to main content
Log in

Involvement of 16S ribosomal RNA in resistance of the aminoglycoside-producers Streptomyces tenjimariensis, Streptomyces tenebrarius and Micromonospora purpurea

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Resistance to aminoglycoside antibiotics in Micromonospora purpurea (the producer of gentamicin C complex), Streptomyces tenebrarius (the nebramycin producer) and Streptomyces tenjimariensis (which makes istamycin) occurs at the level of the ribosome. Reconstitution analysis has revealed, in each case, that 16S rRNA plays a critical role in determining such resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benveniste R, Davies J (1973) Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci USA 70:2276–2280

    Google Scholar 

  • Cella R, Vining LC (1975) Resistance to streptomycin in a producting strain of Streptomyces griseus. Canad J Microbiol 21:463–472

    Google Scholar 

  • Cundliffe E (1978) Mechanism of resistance to thiostrepton in the producing-organism, Streptomyces azureus. Nature 272:792–795

    Google Scholar 

  • Cundliffe E (1984) Self defence in antibiotic-producing organisms. British Medical Bulletin 40:61–67

    Google Scholar 

  • Cundliffe E, Dixon P, Stark M, Stöffler G, Ehrlich R, Stöffler-Meilicke M, Cannon M (1979) Ribosomes in thiostrepton-resistant mutants of Bacillus megaterium lacking a single 50S subunit protein. J Mol Biol 132:235–252

    Google Scholar 

  • Davies J (1980) Aminoglycoside-aminocyclitol antibiotics and their modifying enzymes. In: Lorian V (ed) Antibiotics in laboratory medicine. The Williams & Wilkins Co, Baltimore, pp 474–489

    Google Scholar 

  • Davies J, Davis BD (1968) Misreading of ribonucleic acid code words induced by aminoglycoside antibiotics. J Biol Chem 243:3312–3316

    Google Scholar 

  • Davies J, Houk C, Yagisawa M, White TJ (1979) Occurence and function of aminoglycoside-modifying enzymes. In: Sebek OK, Laskin AI (eds) Genetics of industrial microorganisms. American Society for Microbiology, Washington DC, pp 166–169

    Google Scholar 

  • Helser TL, Davies JE, Dahlberg JE (1972) Mechanism of kasugamycin resistance in Escherichia coli. Nature New Biol 235:6–9

    Google Scholar 

  • Higgens CE, Kastner RE (1968) Nebramycin, a new broad-spectrum antibiotic complex. II. Description of Streptomyces tenebrarius. Antimicrob Agents Chemother 1967:324–331

    Google Scholar 

  • Hotta K, Yamamoto H, Okami Y, Umezawa H (1981) Resistance mechanisms of kanamycin-, neomycin- and streptomycin-producing streptomycetes to aminoglycoside antibiotics. J Antibiot 34:1175–1182

    Google Scholar 

  • Hotta K, Takahashi A, Okami Y, Umezawa H (1983) Relationship between antibiotic resistance and antibiotic productivity in actinomycetes which produce aminoglycoside antibiotics. J Antibiot 36:1789–1791

    Google Scholar 

  • Kühberger R, Piepersberg W, Petzet A, Buckel P, Böck A (1979) Alteration of ribosomal protein L6 in gentamicin-resistant strains of Escherichia coli. Effects on fidelity of protein synthesis. Biochemistry 18:187–193

    Google Scholar 

  • Lehrach H, Diamond D, Wozney JM, Boedtker H (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16:4743–4751

    Google Scholar 

  • Li M, Tzagoloff A, Underbrink-Lyon K, Martin NC (1982) Identification of the paromomycin-resistance mutation in the 15S rRNA gene of yeast mitochondria. J Biol Chem 257:5921–5928

    Google Scholar 

  • Mark LG, Sigmund CD, Morgan EA (1983) Spectinomycin resistance due to a mutation in an rRNA operon of Escherichia coli. J Bacteriol 155:989–994

    Google Scholar 

  • Murakami T, Nojiri C, Toyama H, Hayashi E, Katumata K, Anzai H, Matsuhashi Y, Yamada Y, Nagaoka K (1983) Cloning of antibiotic-resistance genes in Streptomyces. J Antibiotics 36:1305–1311

    Google Scholar 

  • Nakano MM, Mashiko H, Ogawara H (1984) Cloning of the kanamycin resistance gene from a kanamycin-producing Streptomyces species. J Bacteriol 157:79–83

    Google Scholar 

  • Piendl W, Böck A (1982) Ribosomal resistance in the gentamicin producer organism Micromonospora purpurea. Antimicrob Agents Chemother 22:231–236

    Google Scholar 

  • Piwowarski JM, Shaw PD (1979) Streptomycin resistance in a streptomycin-producing microorganism. Antimicrob Agents Chemother 16:176–182

    Google Scholar 

  • Skinner RH, Cundliffe E (1982) Dimethylation of adenine and the resistance of Streptomyces erythraeus to erythromycin. J Gen Microbiol 128:2411–2416

    Google Scholar 

  • Skinner R, Cundliffe E, Schmidt FJ (1983) Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J Biol Chem 258:12702–12706

    Google Scholar 

  • Tai P-C, Davis BD (1979) Triphasic concentration effects of gentamicin on activity and misreading in protein syntheis. Biochemistry 18:193–198

    Google Scholar 

  • Thompson CJ, Gray GS (1983) Nucleotide sequence of a streptomycete aminoglycoside phosphotransferase gene and its relationship to phosphotransferases encoded by resistance plasmids. Proc Natl Acad Sci USA 80:5190–5194

    Google Scholar 

  • Thompson CJ, Skinner RH, Thompson J, Ward JM, Hopwood DA, Cundliffe E (1982a) Biochemical characterization of resistance determinants cloned from antibiotic-producing streptomycetes. J Bacteriol 151:678–685

    Google Scholar 

  • Thompson J, Schmidt F, Cundliffe E (1982b) Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton. J Biol Chem 257:7915–7917

    Google Scholar 

  • Traub P, Nomura M (1969) Structure and function of Escherichia coli ribosomes. VI. Mechanism of assembly of 30S ribosomes studied in vitro. J Mol Biol 40:391–413

    Google Scholar 

  • Vining LC (1979) Antibiotic tolerance in producer organisms. Adv Appl Microbiol 25:147–168

    Google Scholar 

  • Walker MS, Walker JB (1970) Enzymatic phosphorylation of dihydrostreptobiosamine moieties of dihydrostreptomycin-(streptidino) phosphate and dihydrostreptomycin by Streptomyces extracts. J Biol Chem 245:6683–6689

    Google Scholar 

  • Yamada T, Mizugichi Y, Nierhaus KH, Wittmann HG (1978) Resistance to viomycin conferred by RNA of either ribosomal subunit. Nature 275:460–461

    Google Scholar 

  • Yamamoto H, Hotta K, Okami Y, Umezawa H (1981a) Self-resistance of a Streptomyces which produces istamycins. J Antibiot 34:824–829

    Google Scholar 

  • Yamamoto H, Hotta K, Okami Y, Umezawa H (1981b) Ribosomal resistance of an istamycin producer, Streptomyces tenjimariensis, to aminoglycoside antibiotics. Biochem Biophys Res Commun 100:1396–1401

    Google Scholar 

  • Yamamoto H, Hotta K, Okami Y, Umezawa H (1982) Mechanism of resistance to aminoglycoside antibiotics in nebramycin producting Streptomyces tenebrarius. J Antibiot 35:1020–1025

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by E. Bautz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piendl, W., Böck, A. & Cundliffe, E. Involvement of 16S ribosomal RNA in resistance of the aminoglycoside-producers Streptomyces tenjimariensis, Streptomyces tenebrarius and Micromonospora purpurea . Mol Gen Genet 197, 24–29 (1984). https://doi.org/10.1007/BF00327918

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327918

Keywords

Navigation