Skip to main content
Log in

Restriction endonuclease and molecular analyses of three rat genomes with special reference to chromosome rearrangement and speciation problems

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

When differences are found between related species of organisms, it is often assumed that the differences themselves are causal factors either in speciation itself or in processes related to speciation. Two recent proposals on the functions of satellite DNA (Hatch et al., 1976 and Fry and Salser, 1977) are that (a) large amounts of satellite DNA are important in facilitating chromosome rearrangements and hence cytogenetic evolution, and (b) satellite DNA differences between homologous chromosomes lead to pairing difficulties and are important in generating infertility barriers and hence speciation. If these proposals were to have some generality, one could expect organisms with very low amounts of highly repeated DNA to exhibit few chromosome rearrangements and to be evolutionarily conservative in a cyto-genetic sense. — We have chosen two very closely related species of rat which are phenotypically almost indistinguishable and which have undergone massive genome reorganization. They differ by 11 major centric rearrangements (2n=32, 2n=50). We have characterised their genomes by restriction endonuclease digestions, thermal denaturations, analytical ultracentrifugations and reassociation techniques, and have found that they have virtually no highly repeated DNA. Thus the 11 major chromosomal rearrangements have been fixed in present day genomes with hardly any highly repeated DNA, centric or otherwise. — It appears therefore that a large amount of highly repeated DNA is not obligatory for the formation and fixation of chromosome rearrangements. In addition, the existing literature reveals that one can find almost any situation at all, from species groups with high amounts of satellite DNA and no gross chromosomal rearrangements, to ones such as those described here, with tiny amounts of highly repeated DNA and massive chromosomal reorganisation. Since direct experimental data indicates that satellite DNA differences per se between homologous chromosomes do not cause infertility, speculations concerning modes of speciation based on satellite DNA differences between otherwise homologous chromosomes would appear to be ill founded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ansevin, A.T., Vizard, D.L., Brown, B.W., McConathy, J.: High-resolution thermal denaturation of DNA. I. Theoretical and practical considerations for the resolution of thermal subtransitions. Biopolymers 15, 153–174 (1976)

    Google Scholar 

  • Baverstock, P.R., Watts, C.H.S., Hogarth, J.T.: Chromosome evolution in Australian rodents II. The Rattus group. Chromosoma (Berl.) 61, 227–241 (1977)

    Google Scholar 

  • Boer, P. de, Groen, A.: Fertility and meiotic behavior of male T70H tertiary trisomies of the mouse (Mus musculus). A case of preferential telomeric meiotic pairing in a mammal. Cytogenet. Cell Genet. 13, 480–510 (1974)

    Google Scholar 

  • Brown, S.D.M., Dover, G.: Libraries of conserved sequences of DNA between and within genera of rodents. Chromosoma (Berl.) (1979, in press)

  • Bruere, A.N., Zartman, D.L., Chapman, H.M.: The significance of the G-bands and C-bands of three different Robertsonian translocations of domestic sheep (Ovis aries). Cytogenet. Cell Genet. 13, 479–488 (1974)

    Google Scholar 

  • Buckland, R.A., Evans, H.J.: Cytogenetic aspects of phylogeny in Bovidae. II. C-banding. Cytogenet. Cell Genet. 21, 64–71 (1978)

    Google Scholar 

  • Bush, G.L.: Modes of animal speciation. Ann. Rev. Ecol. Systematics 6, 339–364 (1975)

    Google Scholar 

  • Bush, G.L., Case, S.M., Wilson, A.C., Patton, J.L.: Rapid speciation and chromosomal evolution in mammals. Proc. nat. Acad. Sci. (Wash.) 74, 3942–3946 (1977)

    Google Scholar 

  • Carson, H.L.: Ecology of rare Drosophila species in Hawaii Volcanoes National Park. In: Proc. First Conference in Natural Sciences. Hawaii Volcanoes National Park, pp. 39–45, University of Hawaii 1976

  • Carson, H.L., Clayton, F.E., Stalker, H.D.: Karyotype stability and speciation in Hawaiian Drosophila. Proc. nat. Acad. Sci. (Wash.) 57, 1280–1385 (1967)

    Google Scholar 

  • Clayton, F.E.: VIII Additional karyotypes of Hawaiian Drosophila. Univ. Texas Publ. 7103, 171–181 (1971)

    Google Scholar 

  • Comings, D.E., Avelino, E., Okada, T.A., Wyandt, H.E.: The mechanism of C- and G-banding of chromosomes. Exp. Cell. Res. 77, 469–493 (1973)

    Google Scholar 

  • Corneo, G.: Do satellite DNAs function as sterility barriers in eukaryotes? Evol. Theory 1, 261–265 (1976)

    Google Scholar 

  • Craddock, E.M.: Interspecific variability and homogeneity in the satellite DNAs of Hawaiian Drosophila. Genetics 74, S55 (1973)

    Google Scholar 

  • Flamm, W.G., Walker, P.M.B., McCallum, M.: Some properties of the single strands isolated from the DNA of the nuclear satellite of the mouse (Mus musculus). J. molec. Biol. 40, 423–443 (1969)

    Google Scholar 

  • Fry, K., Salser, W.: Nucleotide sequences of HS-α satellite DNA from Kangaroo Rat Dipodomys ordii and characterisation of similar sequences in other rodents. Cell 12, 1069–1084 (1977)

    Google Scholar 

  • Fuke, M., Busch, H.: HindIII-sensitive sites present once in every four repeats of EcoRl-sensitive sites in Novikoff Rat Hepatoma DNA. FEBS Lett. 99, 136–140 (1979)

    Google Scholar 

  • Gropp, A.: Cytologic mechanisms of karyotype evolution in insectivores. In: Comparative mamm. alian cytogenetics (K. Benirschke, ed.) pp. 247–266, Berlin, Heidelberg, New York: Springer 1969

    Google Scholar 

  • Hatch, F.T., Mazrimas, J.A.: Satellite DNA and cytogenetic evolution. Molecular aspects and implications for man. In: Human molecular cytogenetics (R.W. Sparkes, D.E. Comings and C.F. Fox, eds.) 395–414 N.Y.: Academic Press (1977)

    Google Scholar 

  • Hazen, M.W., Arrighi, F.E., Johnston, D.A.: Chromosomes of Peromyscus (Rodentia, Cricetidae). VIII. Genome characterisation in four species. Chromosomes today 6, 167–176 (1977)

    Google Scholar 

  • Hsu, T.C., Arrighi, F.E.: Distribution of constitutive heterochromatin in mammalian chromosomes. Chromosoma (Berl.) 34, 243–253 (1971)

    Google Scholar 

  • Hsu, T.C., Mead, R.A.: Mechanisms of chromosomal changes in mammalian speciation. In: Comparative mammalian cytogenetics (K. Benirschke, ed.) pp. 8–17 Berlin-Heidelberg-New York: Springer 1969

    Google Scholar 

  • John, B., Freeman, M.: Causes and consequences of Robertsonian exchange. Chromosoma (Berl.) 52, 123–136 (1975)

    Google Scholar 

  • John, B., Miklos, G.L.G.: Functional aspects of satellite DNA and heterochromatin. Int. Rev. Cytol 58, 1–114 (1979)

    Google Scholar 

  • Jones, K.: The role of Robertsonian change in karyotype evolution in higher plants. In: Chromosomes today 6, 121–129 (1977)

    Google Scholar 

  • Klein, W.H., Thomas, T.L., Lai, C., Scheller, R.H., Britten, R.J., Davidson, E.H.: Characteristics of individual repetitive sequence families in the sea urchin genome studied with cloned repeats. Cell 14, 889–900 (1978)

    Google Scholar 

  • Livak, K.J., Freund, R., Schweber, M., Wensink, P., Meselson, M.: Sequence organisation and transcription at two heat shock loci in Drosophila. Proc. nat. Acad. Sci. (Wash.) 75, 5613–5617 (1978)

    Google Scholar 

  • Lohe, A.R.: Ph. D. Thesis. Australian National University, Canberra (1977)

    Google Scholar 

  • Manuelidis, L.: A simplified method for preparation of mouse satellite DNA. Anal. Biochem. 78, 561–568 (1977)

    Google Scholar 

  • Miklos, G.L.G., John, B.: Heterochromatin and satellite DNA in man: properties and prospects. Amer. J. Hum. Gen. 31, 264–280 (1979)

    Google Scholar 

  • Mizuno, S., MacGregor, H.C.: Chromosomes, DNA sequences, and evolution in salamanders of the genus Plethodon. Chromosoma (Berl.) 48, 239–296 (1974)

    Google Scholar 

  • Muller, H.J.: Bearings of the ‘Drosophila’ work on systematics. In: The New Systematics (J. Huxley, ed.) pp. 185–268. Oxford: University Press 1940

    Google Scholar 

  • Peacock, W.J., Apples, R., Dunsmuir, P., Lohe, A.R., Gerlach, W.L.: Highly repeated DNA sequences: chromosomal localization and evolutionary conservatism. In: Int. Cell Biol. Congr., pp. 494–506. New York: The Rockefeller University Press 1977

    Google Scholar 

  • Philippsen, P., Streeck, R.E., Zachau, H.G.: Defined fragments of Calf, Human, and Rat DNA produced by Restriction Nucleases. Europ. J. Biochem. 45, 479–488 (1974)

    Google Scholar 

  • Roizes, G.: Analysis of eukaryotic DNAs with a restriction endonuclease from H. influenzae. Isolation of “hidden” satellite DNAs. Nucleic Acids Res. 1, 1099–1120 (1974)

    Google Scholar 

  • Seabright, M.: The use of proteolytic enzymes for the mapping of structural rearrangements in the chromosomes of man. Chromosoma (Berl.) 36, 204–210 (1972)

    Google Scholar 

  • Straus, N.A.: Reassociation of bean DNA. Carnegie Inst. Wash. Year Book 71, 257–259 (1972)

    Google Scholar 

  • Sumner, A.T.: A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 75, 304–306 (1972)

    Google Scholar 

  • Sumner, A.T., Buckland, R.A.: Relative DNA contents of somatic nuclei of Ox, Sheep and Goat. Chromosoma (Berl.) 57, 171–175 (1976)

    Google Scholar 

  • Sutcliffe, J.G.: pBR322 restriction map derived from the DNA sequence: Accurate DNA size markers up to 4361 nucleotide pairs long. Nucleic Acids Res. 5, 2721–2728 (1978)

    Google Scholar 

  • Swanson, C.P.: Cytology and Cytogenetics. New York: Prentice-Hall 1957

    Google Scholar 

  • Szala, S., Bieniek, B., Michalska, J., Chorazy, M.: Interspersion and transcription of repeated sequences of rat DNA. Biochim. biophys. Acta (Amst.) 432, 129–144 (1976)

    Google Scholar 

  • Szala, S., Michalska, J., Paterak, H., Bieniek, B., Chorazy, M.: Inverted sequences in rat DNA. FEBS Lett. 77, 94–98 (1977)

    Google Scholar 

  • Todd, N.B.: Karyotypic fissioning and canid phylogeny. J. theor. Biol. 26, 445–480 (1970)

    Google Scholar 

  • Unakul, W., Hsu, T.C.: The C- and G-banding patterns of Rattus norvegicus chromosomes. J. nat. Cancer. Inst. 49, 1425–1431 (1972)

    Google Scholar 

  • Vizard, D.L., Ansevin, A.T.: High resolution thermal denaturation of DNA: thermalites of bacteriophage DNA. Biochemistry 15, 741–750 (1976)

    Google Scholar 

  • Walker, P.M.P.: How different are the DNAs from related animals? Nature (Lond.) 219, 228–232 (1968)

    Google Scholar 

  • Waterbury, A.M.: Ph. D. Thesis, University of California, Davis (1972)

    Google Scholar 

  • Yamamoto, M.: Cytological studies of heterochromatin function in the Drosophila melanogaster male: Autosomal meiotic pairing. Chromosoma (Berl.) 72, 293–328 (1979)

    Google Scholar 

  • Yamamoto, M., Miklos, G.L.G.: Genetic dissection of heterochromatin in Drosophila: The role of basal X heterochromatin in meiotic sex chromosome behaviour. Chromosoma (Berl.) 60, 283–296 (1977)

    Google Scholar 

  • Yamamoto, M., Miklos, G.L.G.: Genetic studies in heterochromatin in Drosophila melanogaster and their implications for the functions of satellite DNA. Chromosoma (Berl.) 66, 71–98 (1978)

    Google Scholar 

  • Yosida, T.H., Sagai, T.: Variation of C-bands in the chromosomes of several subspecies of Rattus rattus. Chromosoma (Berl.) 50, 283–300 (1975)

    Google Scholar 

  • Zimmerman, E.G., Lee, M.R.: Variation in chromosomes of the cotton rat, Sigmodon hispidus. Chromosoma (Berl.) 24, 243–250 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabor Miklos, G.L., Willcocks, D.A. & Baverstock, P.R. Restriction endonuclease and molecular analyses of three rat genomes with special reference to chromosome rearrangement and speciation problems. Chromosoma 76, 339–363 (1980). https://doi.org/10.1007/BF00327271

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327271

Keywords

Navigation