Skip to main content
Log in

Involvement of the ntrA gene product in the anaerobic metabolism of Escherichia coli

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The ntrA gene product, required for expression of genes involved in nitrogen fixation (nif) and regulation (ntr), was shown to be necessary for the expression of the two enzymes of the anaerobically inducible formate hydrogenlyase (FHL) pathway, formate dehydrogenase (FDHH) and hydrogenase isoenzyme 3. Consistent with this finding, the gene encoding the selenopolypeptide (fdhF) of FDHH was shown to have a nif consensus promoter. The levels of six other anaerobically inducible enzymes were examined and found to be ntrA independent. Significantly, these latter six enzymes are dependent upon the fnr gene product for their expression while FDHH and hydrogenase 3 are fnr independent. These findings indicate that there are at least two classes of anaerobically regulated promoters: one class which is ntrA dependent and fnr independent and a second class which is fnr dependent and ntrA independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Morales A, Hennecke H (1985) Expression of Rhizobium japonicum nifH and nifDK operons can be activated by the Klebsiella pneumoniae nifA protein but not by the product of ntrC. Mol Gen Genet 199:306–314

    Google Scholar 

  • Ausubel F (1984) Regulation of nitrogen fixation genes. Cell 37:5–6

    Google Scholar 

  • Ballantine SP, Boxer DH (1986) Isolation and characterization of a soluble active fragment of hydrogenase isoenzyme 2 from the membranes of anaerobically grown Escherichia coli. Eur J Biochem 156:277–284

    Google Scholar 

  • Barry G, Squires CL, Squires C (1979) Control features within the rpL JL-rpoBC transcription unit of Escherichia coli. Proc Natl Acad Sci USA 76:4922–4926

    Google Scholar 

  • Begg YA, Whyte JN, Haddock BA (1977) The identification of mutants of Escherichia coli deficient in formate dehydrogenase and nitrate reductase activities using dye indicator plates. FEMS Microbiol Lett 2:47–50

    Google Scholar 

  • Birkmann A, Zinoni F, Sawers G, Böck A (1987) Factors affecting transcriptional regulation of the formate-hydrogen-lyase pathway of Escherichia coli. Arch Microbiol 148:44–51

    Google Scholar 

  • Brosius J, Cate RL, Perlmutter AP (1987) Precise location of two promoters for the β-lactamase gene of pBR322. J Biol Chem 257:9205–9210

    Google Scholar 

  • Buck M (1986) Deletion analysis of the Klebsiella pneumoniae nitrogenase promoter: importance of spacing between conserved sequences around positions — 12 and — 24 for activation by the nifA and ntrC (glnG) products. J Bacteriol 166:545–551

    Google Scholar 

  • Casadaban MJ, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76:4430–4533

    Google Scholar 

  • Casadaban MJ, Chou J, Cohen SN (1980) In vitro gene fusions that join an enzymatically active β-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol 143:971–980

    Google Scholar 

  • Castano I, Bastarrachea F (1984) glnF — lacZ fusions in Escherichia coli: Studies on glnF expression and its chromosomal orientation. Mol Gen Genet 195:228–233

    Google Scholar 

  • Chang ACY, Cohen SN (1978) Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134:1141–1156

    Google Scholar 

  • Chen EY, Seeburg PH (1985) Supercoil sequencing: a fast and simple method for sequencing plasmid DNA. DNA 4:165–170

    Google Scholar 

  • Cole ST (1982) Nucleotide sequence coding for the flavoprotein subunit of the fumarate reductase of Escherichia coli. Eur J Biochem 122:479–484

    Google Scholar 

  • Cox JC, Edwards ES, DeMoss JA (1981) Resolution of distinct selenium-containing formate dehydrogenases from Escherichia coli. J Bacteriol 145:1317–1324

    Google Scholar 

  • Dixon R (1984) Tandem promoters determine regulation of the Klebsiella pneumoniae glutamine synthetase (glnA) gene. Nucleic Acids Res 12:7811–7830

    Google Scholar 

  • Dixon R (1986) The xylABC promoter from the Pseudomonas putida TOL plasmid is activated by nitrogen regulatory genes in Escherichia coli. Mol Gen Genet 203:129–136

    Google Scholar 

  • Emtage JS, Tacon WCA, Catlin GH, Jenkins B, Porter AG, Carey NH (1980) Influenza antigenic determinants are expressed from haemagglutinin genes cloned in Escherichia coli. Nature 283:171–174

    Google Scholar 

  • Enami M, Ishihama A (1984) Protein phosphorylation in Escherichia coli and purification of a protein kinase. J Biol Chem 259:526–533

    Google Scholar 

  • Enoch HG, Lester RL (1975) The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J Biol Chem 250:6693–6705

    Google Scholar 

  • Fujita N, Nomura T, Ishihama A (1987) Promoter selectivity of Escherichia coli RNA polymerase. J Biol Chem 262:1855–1859

    Google Scholar 

  • Garcia E, Bancroft S, Rhee SG, Kustu S (1977) The product of a newly identified gene, glnF, is required for synthesis of glutamine synthetase in Salmonella. Proc Natl Acad Sci USA 74:1662–1666

    Google Scholar 

  • Giordano G, Medani CL, Mandrand-Berthelot MA, Boxer DH (1983) Formate dehydrogenases from Escherichia coli. FEMS Microbiol Lett 17:171–177

    Google Scholar 

  • deGroot GN, Stouthamer AH (1970) Regulation of reductase formation in Proteus mirabilis. II. Influence of growth with azide and of haem deficiency on nitrate reductase formation. Biochim Biophys Acta 208:414–427

    Google Scholar 

  • Gussin GN, Ronson CW, Ausubel FM (1986) Regulation of nitrogen fixation genes. Annu Rev Genet 20:567–591

    Google Scholar 

  • Harley CB, Reynolds RP, (1987) Analysis of E. coli promoter sequences. Nucleic Acids Res 15:2343–2361

    Google Scholar 

  • Hawley DK, McClure W (1983) Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255

    Google Scholar 

  • Hirschman J, Wong PK, Sei K, Keener J, Kustu S (1985) Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a σ factor. Proc Natl Acad Sci USA 82:7525–7529

    Google Scholar 

  • Hunt TP, Magasanik B (1985) Transcription of glnA by purified Escherichia coli components: core RNA polymerase and the products of glF, glnG and glnL. Proc Natl Acad Sci USA 82:8453–8457

    Google Scholar 

  • Ihara M, Oda Y, Yamamoto K (1985) Convenient construction of strains useful for transducing recA mutations with bacteriophage P1. FEMS Microbiol Lett 30:33–35

    Google Scholar 

  • Inouye S, Ebina Y, Nakazawa A, Nakazawa T (1984) Nucleotide sequence surrounding transcription initiation site of xylABC operon on TOL plasmid of Pseudomonas putida. Proc Natl Acad Sci USA 81:1688–1691

    Google Scholar 

  • Jamieson DJ, Higgins CF (1986) Two genetically distinct pathways for transcriptional regulation of anaerobic gene expression in Salmonella typhimurium. J Bacteriol 168:389–397

    Google Scholar 

  • Jamieson DJ, Sawers RG, Rugman PA, Boxer DH, Higgins CF (1986) Effects of anaerobic regulatory mutations and catabolite repression on regulation of hydrogen metabolism and hydrogenase isoenzyme composition in Salmonella typhimurium. J Bacteriol 168:405–411

    Google Scholar 

  • Jones HM, Gunsalus RP (1985) Transcription of the Escherichia coli fumarate reductase genes (frdABCD) and their coordinate regulation by oxygen, nitrate and fumarate. J Bacteriol 164:1100–1109

    Google Scholar 

  • Kuritzkes DR, Zhang X-Y, Lin ECC (1984) Use of ϕ (glp-lac) in studies of respiratory regulation of the Escherichia coli anaerobic sn-glycerol-3-phosphate dehydrogenase genes (glpAB). J Bacteriol 157:591–598

    Google Scholar 

  • Kustu S, Burton D, Garcia E, McCarter L, McFarland N (1979) Nitrogen control in Salmonella: regulation by the glnR and glnF gene products. Proc Natl Acad Sci USA 76:4576–4580

    Google Scholar 

  • Lambden PR, Guest JR (1976) Mutants of Escherichia coli K12 unable to use fumarate as an anerobic electron acceptor. J Gen Microbiol 97:145–160

    Google Scholar 

  • Lester RL, DeMoss JA (1971) Effects of molybdate and selenite on formate and nitrate metabolism in Escherichia coli. J Bacteriol 105:1006–1014

    Google Scholar 

  • Li S, Rabi T, DeMoss JA (1985) Delineation of two distinct regulatory domains in the 5′ region of the nar operon of Escherichia coli. J Bacteriol 164:25–32

    Google Scholar 

  • Losick R, Pero J (1981) Cascades of sigma factors. Cell 25:582–584

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • McPherson JM, Baron AJ, Pappin DJC, Wootton JC (1984) Respiratory nitrate reductase of Escherichia coli: sequence identification of the large subunit gene. FEBS Lett 177:260–264

    Google Scholar 

  • MacNeil T, Roberts GP, MacNeil D, Tyler B (1982) The products of glnL and glnG are bifunctional regulatory proteins. Mol Gen Genet 188:325–333

    Google Scholar 

  • Magasanik B (1982) Genetic control of nitrogen assimilation in bacteria. Annu Rev Genet 16:135–168

    Google Scholar 

  • Maloy SR, Nunn WD (1981) Selection for loss of tetracycline resistance by Escherichia coli. J Bacteriol 145:1110–1112

    Google Scholar 

  • Maniatis T, Frisch EF, Sambrook J (1982) Molecular Cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Merrick MJ, Stewart WDP (1985) Studies on the regulation and function of the Klebsiella pneumoniae ntrA gene. Gene 35:297–303

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Press, Cold Spring Harbor, New York

    Google Scholar 

  • Minton NB, Clarke LE (1985) Identification of the promoter of the Pseudomonas gene coding for carboxypeptidase G2. J Mol Appl Genet 2:26–35

    Google Scholar 

  • Newman M, Cole JA (1978) The chromosomal location and pleiotropic effects of mutations of the nirA + gene of Escherichia coli K12: the essential role of nirA + in nitrate reduction and in other anaerobic redox reactions. J Gen Microbiol 106:1–12

    Google Scholar 

  • Pecher A, Zinoni F, Jatisatienr C, Wirth R, Hennecke H, Böck A (1983) On the redox control of synthesis of anaerobically induced enzymes in enterobacteriaceae. Arch Microbiol 136:131–136

    Google Scholar 

  • Pecher A, Zinoni F, Böck A (1985) The seleno-polypeptide of formic dehydrogenase (formate hydrogen-lyase linked) from Escherichia coli: genetic analysis. Arch Microbiol 141:359–363

    Google Scholar 

  • Peck HD, Gest H (1957) Formic dehydrogenase and the hydrogenlyase enzyme complex in coli-aerogenes bacteria. J Bacteriol 73:706–721

    Google Scholar 

  • Prentki P, Krisch HM (1984) In vitro intro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313

    Google Scholar 

  • Reitzer LJ, Magasanik B (1985) Expression of glnA in Escherichia coli is regulated at tandem promoters. Proc Natl Acad Sci USA 82:1979–1983

    Google Scholar 

  • Reitzer LJ, Magasanik B (1986) Transcription of glnA in E. coli is stimulated by activator bound to sites far from the promoter. Cell 45:785–792

    Google Scholar 

  • Reznikoff WS, Siegele DA, Cowing DW, Gross CA (1985) The regulation of transcription initiation in bacteria. Annu Rev Genet 19:355–387

    Google Scholar 

  • Ronson CW, Astwood PM (1985) Genes involved in the carbon metabolism of bacteroids. In: Evans HJ, Bottomley PJ, Newton WE (eds) Nitrogen fixation research progress. Martinus Nijhoff, Dordrecht, pp 165–171

    Google Scholar 

  • Ronson CW, Nixon BT, Albright LM, Ausubel FM (1987) Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions. J Bacteriol 169:2424–2431

    Google Scholar 

  • Rosenberg M, Court D (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13:319–353

    Google Scholar 

  • Sawers RG, Ballantine SP, Boxer DH (1985) Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme. J Bacteriol 164:1324–1331

    Google Scholar 

  • Sawers RG, Boxer DH (1986) Purification and properties of membrane-bound hydrogenase isoenzyme 1 from anaerobically grown Escherichia coli K-12. Eur J Biochem 156:265–275

    Google Scholar 

  • Sawers RG, Jamieson DJ, Higgins CF, Boxer DH (1986) Characterization and physiological roles of membrane-bound hydrogenase isoenzymes from Salmonella typhiumurium. J Bacteriol 168:398–404

    Google Scholar 

  • Shaw DJ, Guest JR (1981) Molecular cloning of the fnr gene of Escherichia coli K12. Mol Gen Genet 181:95–100

    Google Scholar 

  • Shaw DJ, Guest JR (1982) Nucleotide sequence of the fnr gene and primary structure of the Fnr protein of Escherichia coli. Nucleic Acids Res 10:6119–6130

    Google Scholar 

  • Showe MK, DeMoss JA (1968) Localization and regulation of synthesis of nitrate reductase in Escherichia coli. J Bacteriol 95:1305–1313

    Google Scholar 

  • Stewart V (1982) Requirement of Fnr and NarL functions for nitrate reductase expression in Escherichia coli K-12. J Bacteriol 151:1320–1325

    Google Scholar 

  • Unden G, Guest JR (1985) Isolation and characterization of the Fnr protein, the transcriptional regulator of anaerobic electron transport in Escherichia coli. Eur J Biochem 146:193–199

    Google Scholar 

  • Wimpenny JWT, Cole JA (1967) The regulation of metabolism in facultative bacteria. III. The effect of nitrate. Biochim Biophys Acta 148:233–242

    Google Scholar 

  • Zinoni F, Beier A, Pecher A, Wirth R, Böck A (1984) Regulation of the synthesis of hydrogenase (formate hydrogen-lyase linked) of E. coli. Arch Microbiol 139:299–304

    Google Scholar 

  • Zinoni F, Birkmann A, Stadtman TC, Böck A (1986) Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyaselinked) from Escherichia coli. Proc Natl Acad Sci USA 83:4650–4654

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Hennecke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birkmann, A., Sawers, R.G. & Böck, A. Involvement of the ntrA gene product in the anaerobic metabolism of Escherichia coli . Mol Gen Genet 210, 535–542 (1987). https://doi.org/10.1007/BF00327209

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327209

Key words

Navigation