Skip to main content
Log in

Phylogenetic analysis of the RNA polymerases of Trypanosoma brucei, with special reference to class-specific transcription

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

We have sequenced the genes encoding te largest subunits of the three classes of DNA-dependent RNA polymerases of Trypanosoma brucei. The nucleotide and deduced amino acid sequences were compared and aligned with the corresponding sequences of other eukaryotes. Phylogenetic relationships were subsequently calculated with a distant matrix, a bootstrapped parsimony and a maximum-likelihood method. These independent calculations resulted in trees with very similar topologies. The analyses show that all the largest subunits of T. brucei are evolutionarily distant members within each of the three RNA polymerase classes. An early separation of the trypanosomal subunits from the eukaryotic lineage might from the fundamental basis for the unusual transcription process of this species. Finally, all dendrograms show a separate ramification for the largest subunit of RNA polymerase I, II and III. RNA polymerase II and/or III form a bifurcation with the archaebacterial lineage. RNA polymerase I, however, arises separately from the eubacterial β′ lineage. This suggests that the three eukaryotic RNA polymerase classes are not simply derived by two gene duplications of an ancestral gene with subsequent differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahaern JM, Bartolomei MS, West ML, Cisek LJ, Corden JL (1987) J Biol Chem 262:10695–10705

    Google Scholar 

  • Allison LA, Moyle M, Shales M, Ingles CJ (1985) Cell 42:599–610

    Google Scholar 

  • Allison LA, Wong JK-C, Fitzpatrick VD, Moyle M, Ingles CJ (1988) Mol Cell Biol 8:321–329

    Google Scholar 

  • Armaleo D (1987) J Theor Biol 127:301–314

    Google Scholar 

  • Armaleo D (1988) J Theor Biol 131:135–136

    Google Scholar 

  • Bartolomei MS, Halden NF, Cullen CR, Corden JL (1988) Mol Cell Biol 8:330–339

    Google Scholar 

  • Bird DM, Riddle DL (1989) Mol Cell Biol 9:4119–4130

    Google Scholar 

  • Chambon P (1975) Annu Rev Biochem 44:613–638

    Google Scholar 

  • Cordon JL, Cadena DL, Ahearn JM, Dahmus ME (1985) Proc Natl Acad Sci USA 82:7934–7938

    Google Scholar 

  • Cornelissen AWCA, Evers R, Köck J (1988) Oxford Surveys Euk Gen 5:91–131

    Google Scholar 

  • Dayhoff MO, Schwartz RM, Orcutt BC (1978) In: Dayhoff MO (ed) Atlas of protein sequence and structure. Natl Biomed Res Found, Washington, pp 345–358

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) Nucleic Acids Res 12:387–395

    Google Scholar 

  • Evers R, Cornelissen AWCA (1990) Nuclei Acids Res 18:5089–5095

    Google Scholar 

  • Evers R, Hammer A, Cornelissen AWCA (1989a) Nucleic Acids Res 17:3403–3413

    Google Scholar 

  • Evers R, Hammer A, Köck J, Jess W, Borst P, Mémet S, Cornelissen AWCA (1989b) Cell 56:585–597

    Google Scholar 

  • Faust DM, Renkawitz-Pohl R, Falkenburg D, Gasch A, Bialojan S, Young RA, Bautz EKF (1986) EMBO J 5:741–746

    Google Scholar 

  • Felsenstein J (1981) J Mol Evol 17:368–376

    Google Scholar 

  • Felsenstein J (1984) In: Ducan T, Stuessy TF (eds) Cladistics: Perspectives in the construction of evolutionary history. Columbia University Press, New York, pp 169–191

    Google Scholar 

  • Feng DF, Johnson MS, Doolittle RF (1985) J Mol Evol 21:112–125

    Google Scholar 

  • Fitch WM, Margoliash E (1967) Science 155:279–284

    Google Scholar 

  • Grondal EJM, Evers R, Köck J, Jess W, Cornelissen AWCA (1990) In: Agabian N, Cerami A (eds) Parasites: Molecular biology, drug and vaccine design. UCLA Symp Molec Cell Biol, New Series, vol 130 Alan R. Liss, Inc., New York, pp 279–296

    Google Scholar 

  • Grummt I (1989) In: Eckstein F, Lilley DMJ (eds) Nucleic acids and molecular biology, Vol 3. Springer Verlag, Heidelberg Berlin New York, pp 148–163

    Google Scholar 

  • Hirano T, Konoha G, Toda T, Yanagida M (1989) J Cell Biol 108:243–253

    Google Scholar 

  • Hoare CA (1972) The trypanosomes of mammals. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Huet J, Schnabel R, Sentenac A, Zillig W (1983) EMBO J 2:1291–1294

    Google Scholar 

  • Jess W, Hammer A, Cornelissen AWCA (1989) FEBS Lett 249:123–128

    Google Scholar 

  • Jokerst RS, Zehring WA, Weeks JR, Greenleaf AL (1989) Mol Gen Genet 215:266–275

    Google Scholar 

  • Köck J, Evers R, Cornelissen AWCA (1988) Nucleic Acids Res 16:8753–8772

    Google Scholar 

  • Kontermann R, Sitzler S, Seifarth W, Petersen G, Bautz EKF (1989) Mol Gen Genet 219:373–380

    Google Scholar 

  • Lake JA (1987a) Mol Biol Evol 4:167–191

    Google Scholar 

  • Lake JA (1987b) J Mol Evol 26:59–73

    Google Scholar 

  • Lake JA, de la Cruz VF, Ferreira PCG, Morel C, Simpson L (1988) Proc Natl Acad Sci USA 85:4779–4783

    Google Scholar 

  • Lazcano A, Fastag J, Cariglio P, Ramírez C, Oró J (1988) J Mol Evol 27:365–376

    Google Scholar 

  • Li W-B, Bzik DJ, Gu H, Tanaka M, Fox BA, Inselburg J (1989) Nucleic Acids Res 17:9621–9636

    Google Scholar 

  • Mémet S, Gouy M, Marck C, Sentenac A, Buhler J-M (1988a) J Biol Chem 263:2830–2839

    Google Scholar 

  • Mémet S, Saurin W, Sentenac A (1988b) J Biol Chem 263:10048–10051

    Google Scholar 

  • Mosrin C, Thuriaux P (1990) Curr Genet 17:367–373

    Google Scholar 

  • Murphy S, Moorefield B, Pieler T (1989) TIG 5:122–126

    Google Scholar 

  • Nonet M, Sweetser D, Young RA (1987) Cell 50:909–915

    Google Scholar 

  • Nonet ML, Young RA (1989) Genetics 123:715–724

    Google Scholar 

  • Pühler G, Leffers H, Group F, Palm P, Klenk H-P, Lottspeich F, Garrett RA, Zillig W (1989) Proc Natl Acad Sci USA 86:4569–4573

    Google Scholar 

  • Reddy R, Busch H (1988) In: Birnstiel ML (ed) Structure and function of major and minor small nuclear ribonuclein particles. Springer, Heidelberg Berlin New York, pp 100–115

    Google Scholar 

  • Sawadogo M, Sentenac A (1990) Annu Rev Biochem 59:711–754

    Google Scholar 

  • Sentenac A (1985) CRC Crit Rev Biochem 18:31–90

    Google Scholar 

  • Sigler PB (1988) Nature 335:210–212

    Google Scholar 

  • Smith JL, Levin JR, Agabian N (1989a) J Biol Chem 264:18091–18099

    Google Scholar 

  • Smith JL, Levin JR, Ingles CJ, Agabian N (1989b) Cell 56:815–827

    Google Scholar 

  • Sogin ML, Elwood HJ, Gunderson JH (1986) Proc Natl Acad Sci USA 83:1383–1387

    Google Scholar 

  • Sogin ML, Gunderson JH, Elwood HJ, Alonso RA, Peattie DA (1989) Science 243:75–77

    Google Scholar 

  • Sollner-Webb B (1988) Cell 52:153–154

    Google Scholar 

  • Sweetser B, Nonet M, Young RA (1987) Proc Natl Acad Sci USA 84:1192–1196

    Google Scholar 

  • Zehring WA, Lee JM, Weeks JR, Jokerst RS, Greenleaf AL (1988) Proc Natl Acad Sci USA 85:3698–3702

    Google Scholar 

  • Zillig W, Klenk H-P, Palm P, Pühler G, Gropp F (1989) Can J Microbiol 35:73–80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. A. Grivell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jess, W., Palm, P., Evers, R. et al. Phylogenetic analysis of the RNA polymerases of Trypanosoma brucei, with special reference to class-specific transcription. Curr Genet 18, 547–551 (1990). https://doi.org/10.1007/BF00327026

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00327026

Key words

Navigation