Skip to main content
Log in

Correlation memory models — a first approximation in a general learning scheme

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Correlation memory models, originally proposed as a possible phenomenological description of how information is stored in the brain, are shown to be a first order approximation in the framework of a general learning scheme based on stochastic optimization. if the latter is applied to adaptive filters. Under certain conditions, this first order approximation is already nearly optimal as the resulting filter gains and overall filter response will be close to what can in general be obtained only after an infinite number of learning steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, J.A.: A memory storage model utilizing spatial correlation functions. Kybernetik5, 113 (1968)

    Google Scholar 

  • Anderson, J.A.: Two models for memory organization using interacting traces. Math. Biosci.8, 137 (1970)

    Google Scholar 

  • Anderson, J.A.: A simple neural network generating an interactive memory. Math. Biosci.14, 197 (1972)

    Google Scholar 

  • Anderson, J.A.: A theory for the recognition of items from short memorized lists. Psychol. Rev.80, 417 (1973)

    Google Scholar 

  • Blanc-Lapierre, A., Fortet, R.: Theory of random functions, Vol. I. London: Gordon & Breach 1967

    Google Scholar 

  • Borsellino, A., Poggio, T.: Holographic aspects of temporal memory and optomotor response. Kybernetik10, 58 (1971)

    Google Scholar 

  • Borsellino, A., Poggio, T.: Convolution and correlation algebras. Kybernetik13, 113 (1973)

    Google Scholar 

  • Bush, R.R., Mosteller, F.: Stochastic models for learning. New York: Wiley 1955

    Google Scholar 

  • Dvoretzky, A.: On stochastic approximation. Proc. Third Berkeley Symp. Math. Statist. Prob.1, 39–55 (1956)

    Google Scholar 

  • Fukushima, K.: A model of associative memory in the brain. Kybernetik12, 58 (1973)

    Google Scholar 

  • Gabor, D.: Holographic model of temporal recall. Nature217, 584 (1968)

    Google Scholar 

  • Gabor, D.: Improved holographic model of temporal recall. Nature217, 1288 (1968)

    Google Scholar 

  • Gabor, D.: Associative holographic memories. IBM J. Res. Devel.13, 2 (1969)

    Google Scholar 

  • Gelfand, I.M., Vilenkin, N. Ya.: Generalized functions. Vol. 4. London-New York: Academic Press 1964

    Google Scholar 

  • Hoffmann, U., Hofmann, H.: Einführung in die Optimierung. Weinheim: Verlag Chemie GmbH 1971

    Google Scholar 

  • Kohonen, T.: Correlation matrix memories. IEEE Trans. on Computers C-21, 353 (1972)

    Google Scholar 

  • Lathi, B.P.: An introduction to random signals and communication theory. London Intertext 1968

  • Loève, M.: Probability theory. (3rd ed.). New York: Van Nostrand 1963

    Google Scholar 

  • Longuet-Higgins, H.C.: Holographic model of temporal recall. Nature217, 104 (1968)

    Google Scholar 

  • Nakano, K.: Associtron — a model of associative memory. IEEE Trans. on Systems, Man, and Cybernetics SM-2, 380 (1972)

    Google Scholar 

  • Pfaffelhuber, E.: A model for learning and imprinting with finite and infinite memory range. Kybernetik12, 229 (1973a)

    Google Scholar 

  • Pfaffelhuber, E.: Generalized harmonic analysis for distributions. Proc. IEEE Intern. Symp. Information Theory, Israel, 1973b, and IEEE Trans. on Information Theory (in press)

  • Pfaffelhuber, E., Damle, P.S.: Learning and imprinting in stationary and non-stationary environment. Kybernetik13, 229 (1973)

    Google Scholar 

  • Poggio, T.: On holographic models of memory. Kybernetik12, 237 (1973)

    Google Scholar 

  • Schmetterer, L.: Stochastic approximation. Proc. Fourth Berkeley Symp. Math. Statist. Prob.,1, 587–609 (1961)

    Google Scholar 

  • Schmetterer, L.: Multidimensional stochastic approximation. Multivariate Analysis2, 443 (1969)

    Google Scholar 

  • Steinbuch, K.: Die Lernmatrix. Kybernetik1, 36 (1961)

    Google Scholar 

  • Tsypkin, Ya.Z.: Adaptation and learning in automatic systems. London-New York: Academic Press 1971

    Google Scholar 

  • Tsypkin, Ya.Z.: Foundation of the theory of learning systems. London-New York: Academic Press 1973

    Google Scholar 

  • Wiener, N.: Extrapolation, interpolation, and the smoothing of stationary time series. Cambridge, Mass.: M.I.T. Press 1949

    Google Scholar 

  • Wigström, H.: A neuron model with learning capability and its relation to mechanisms of association. Kybernetik12, 204 (1973)

    Google Scholar 

  • Willshaw, D.J.: Models of distributed associative memories. Ph. D. Thesis, University of Edinburg (1971)

  • Willshaw, D.J., Longuet-Higgins, H.C.: The holophone — recent developments. Machine Intelligence4, 349 (1969)

    Google Scholar 

  • Willshaw, D.J., Buneman, O.P., Longuet-Higgins, H.C.: Non-holographic associative Memory. Nature222, 960 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfaffelhuber, E. Correlation memory models — a first approximation in a general learning scheme. Biol. Cybernetics 18, 217–223 (1975). https://doi.org/10.1007/BF00326691

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326691

Keywords

Navigation