Skip to main content
Log in

On the contractile mechanism of insect fibrillar flight muscle IV. A quantitative chemo-mechanical model

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Zusammenfassung

Ausgehend von detaillierten Vorstellungen zur Kinetik der myofibrillären ATPase und der Ankopplung der Enzymwirkung an die Mechanik der Myosinbrückenzyklen wird ein quantitatives chemo-mechanisches Modell für den fibrillären Insektenflugmuskel vorgeschlagen. Mit der Wahl eines einheitlichen Parametersatzes gelingt es praktisch alle bisher in der Literatur beschriebenen Resultate zu simulieren. Dazu gehören der verzögerte Spannungsaufbau bei rechteckförmigen und sinusoidalen Längenänderungen, charakteristische Nichtlinearitäten in den oszillatorischen Längen-Spannungsschleifen, die Aktivierung der ATPase Aktivität durch statische und dynamische Dehnung, der proportionale Anstieg des Wirkungsgrades der chemo-mechanischen Kopplung mit der Effektivgeschwindigkeit bei der Oszillation, sowie die Existenz von Autooszillationen. In Übereinstimmung mit strukturellen und biochemischen Befunden erlaubt das Modell eine molekulare Interpretation des Aktivierungsmechanismus über ein Zusammenwirken von Ca2+-Konzentration und Rückkopplung der Muskelkraft sowohl bei der Aktivierung des Aktinfilaments (über Verschiebungen in den Tropomyosinmolekülen) wie auch am Ca2+-abhängigen Regulationssystem des Myosins im fibrillären Flugmuskel. Damit gelingt es die Ca2+-Abhängigkeiten der ATPase Aktivität, der Frequenzverscheibung auf der mechanischen Ortskurve, sowie der Zeitkonstanten bei sprungförmigen Längen-und Spannungsänderungen vorauszusagen. Die in Röntgenanalysen gefundene Abnahme der Zahl der am Aktinfilament angepackten Myosinbrücken nach höheren Oszillationsgeschwindigkeiten hin wird durch die Annahme einer geschwindigkeitsabhängigen Ratenkonstante für das Loslassen der Myosinbrücken im Modell realisiert. Zusätzlich wird es möglich, für die bisherige Modellbidung am Wirbeltiermuskel wichtige Experimente, wie das Verhalten des Systems bei kleinen, sehr schnellen Wegänderungen (Huxley und Simmons, 1971) oder bei sprungförmiger Entlastung des Muskels (Civan und Podolsky, 1966) modellmäßig nachzuempfinden. Die Modellsimulationen deuten auf eine Gleichartigkeit des Kontraktionsmechanismus im Skelettmuskel der Wirbeltiere und im Insektenflugmuskel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abbott, R.H.: The effects of fibre length and calcium ion concentration on the dynamic response of glycerol extracted insect fibrillar muscle. J. Physiol. (Lond.)231, 195–208 (1973)

    Google Scholar 

  • Abbott, R.H.: The mechanism of the oscillatory contraction of insect fibrillar flight muscle. D. Phil. Thesis, University of Oxford (1968)

  • Abbott, R.H.: An interpretation of the effects of fibre length and calcium on the mechanical properties of insect flight muscle. Cold Spr. Harb. Symp. quant. Biol.37, 647–654 (1972)

    Google Scholar 

  • Abbott, R.H., Mannherz, H.G.: Activation by ADP and the correlation between tension and ATPase activity in insect fibrillar muscle. Pflügers Arch. ges. Physiol.321, 223–232 (1970)

    Google Scholar 

  • Armitage, P., Miller, A., Rodger, C.D., Tregear, R.T.: The structure and function of insect muscle. Cold Spr. Harb. Symp. quant. Biol.37, 379–388 (1972)

    Google Scholar 

  • Armstrong, C., Huxley, A.F., Julian, F.J.: Oscillatory response in frog skeletal muscle fibres. J. Physiol. (Lond.)186, 26–27 (1966)

    Google Scholar 

  • Breull, W., Steiger, G., Rüegg, J.C.: ATP splitting in relation to isometric tension oscillation and cross-bridge cycling of insect fibrillar muscle. J. Mechanochem. Cell Motility2, 91–100 (1974)

    Google Scholar 

  • Bullard, B., Dabrowska, R., Winkelman, L.: The contractile and regulatory proteins of insect flight muscle. Biochem. J.135, 277–286 (1973)

    Google Scholar 

  • Chaplain, R.A.: Tension development of glycerinated insect muscle fibres as a measure of the conformational state of the myosin. Biochem. biophys. Res. Commun.24, 526–530 (1966)

    Google Scholar 

  • Chaplain, R.A., Tregear, R.T.: The mass of myosin per cross-bridge in insect fibrillar flight muscle. J. molec. Biol.21, 275–280 (1966)

    Google Scholar 

  • Chaplain, R.A.: The effect of Ca2+ and fibre elongation on the activation of the contractile mechanism of insect fibrillar muscle. Biochem. biophys. Acta (Amst.)131, 385–392 (1967)

    Google Scholar 

  • Chaplain, R.A.: Changes of adenosine triphosphatase activity and tension with fibre elongation in glycerinated insect fibrillar flight muscle. Pflügers. Arch. ges. Physiol.307, 120–126 (1969)

    Google Scholar 

  • Chaplain, R.A., Frommelt, B.: On the contractile mechanism of insect fibrillar flight muscle. I. The dynamics and energetics of the linearized system. Kybernetik5, 1–17 (1968)

    Google Scholar 

  • Chaplain, R.A., Frommelt, B., Pfister, E.: On the contractile mechanism insect fibrillar flight muscle. II. Passive muscle—a viscoelastic system. Kybernetik5, 61–70 (1968)

    Google Scholar 

  • Chaplain, R.A., Frommelt, B., Brandt, M.: On the contractile mechanism of insect fibrillar flight muscle. III. The phenomenon of stress relaxation. Kybernetik5, 177–187 (1969)

    Google Scholar 

  • Chaplain, R.A., Frommelt, B.: A mechanochemical model for muscular contraction. I. The rate of energy liberation at steady state velocities of shortening and lengthening. J. Mechanochem. Cell. Motility1, 41–56 (1971)

    Google Scholar 

  • Chaplain, R.A., Honka, B.: The velocity-dependence of cross-bridge movement and tension development in oscillatory contractions of insect fibrillar muscle. Experientia30, 501–504 (1974a)

    Google Scholar 

  • Chaplain, R.A., Honka, B.: Changes in myosin cross-bridge attachment during oscillatory contractions of insect fibrillar muscle. FEBS Lett.40, 45–48 (1974b)

    Google Scholar 

  • Chaplain, R.A., Sacharjan, S.: Calcium and tension-dependent changes in the actin filament structure of insect fibrillar muscle. FEBS Lett.42, 50–53 (1974)

    Google Scholar 

  • Chaplain, R.A., Gergs, U.: Pre-steady state kinetics of rabbit myosin- and actomyosin-ATPase. FEBS Lett.43, 277–280 (1974)

    Google Scholar 

  • Chaplain, R.A., Formmelt, B., Honka, B.: The chemo-mechanical coupling relation in the oscillatory contraction-relaxation cycles of insect fibrillar muscle. J. Mechanochem. (in press 1974)

  • Civan, M.M., Podolsky, R.J.: Contraction kinetics of striated muscle fibres following quick changes in load. J. Physiol. (Lond.)184, 511–534 (1966)

    Google Scholar 

  • Deshcherevskii, V.I.: A kinetic theory of striated muscle contraction. Biorheology7, 147–170 (1971)

    Google Scholar 

  • Ebashi, S., Endo, M.: Calcium ion and muscle contraction. Progr. Biophys. molec. Biol.18, 123–184 (1968)

    Google Scholar 

  • Haselgrove, J.C.: X-ray evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle. Cold Spr. Harb. Symp. quant. Biol.37, 341–352 (1972)

    Google Scholar 

  • Heinl, P.: Mechanische Aktivierung und Deaktivierung der isolierten Struktur des Froschsartorius durch rechteckförmige und sinusförmige Längenänderungen. Pflügers Arch. ges. Physiol.333, 213–226 (1972)

    Google Scholar 

  • Huxley, A.F.: Muscle structure and theories of contraction. Progr. Biophys. biophys. Chem.7, 255–318 (1957)

    Google Scholar 

  • Huxley, A.F., Simmons, R.M.: Proposed mechanism of force generation in striated muscle. Nature (Lond.)233, 533–538 (1971)

    Google Scholar 

  • Huxley, H.E., Brown, W.: The low-angle X-ray diagram of vertebrate striated muscle and its behavior during contraction and rigor. J. molec. Biol.30, 383–398 (1967)

    Google Scholar 

  • Huxley, H.E.: Structural changes in the actin- and myosin-containing filaments during contraction. Cold Spr. Harb. Symp. quant. Biol.37, 361–376 (1972)

    Google Scholar 

  • Jewell, B.R., Rüegg, J.C.: Oscillatory contraction of insect fibrillar muscle after glycerol extraction. Proc. Roy. Soc. B.164, 428–459 (1966)

    Google Scholar 

  • Julian, F.: Activation in a skeletal muscle contraction model with a modification for insect fibrillar muscle. Biophys. J.9, 547–570 (1969)

    Google Scholar 

  • Kushmerick, M.J., Davies, R.E.: The chemical energetics of muscle contraction. II. The chemistry, efficiency and power of maximally working sartorius muscles. Proc. Roy. Soc. B174, 315–353 (1969)

    Google Scholar 

  • Lehman, W., Kendrick-Jones, J., Szent-Györgyi, A.G.: Myosin-linked regulatory systems: Comparative studies. Cold. Spr. Harb. Symp. quant. Biol.37, 319–330 (1972)

    Google Scholar 

  • Lehman, W., Bullard, B., Hamond, K.: Calcium-dependent myosin from insect flight muscles. J. gen. Physiol.63, 553–563 (1974)

    Google Scholar 

  • Lymn, R.W., Taylor, E.W.: Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry (N.Y.)25, 4617–4624 (1971)

    Google Scholar 

  • Machin, K.E., Pringle, J.W.S.: The physiology of insect fibrillar muscle. III. The effect of sinusoidal changes of length on a beetle flight muscle. Proc. Roy. Soc. B152, 311–330 (1960)

    Google Scholar 

  • Marston, S., Tregear, R.T.: Calcium binding and the activation of insect fibrillar muscle. Biochim. biophys. Acta (Amst.)347, 311–318 (1974)

    Google Scholar 

  • Maruyama, K., Pringle, J.W.S., Tregear, R.T.: The calcium sensitivity of ATPase activity of myofibrils and actomyosin from insect flight and leg muscles. Proc. Roy. Soc. B169, 229–240 (1968)

    Google Scholar 

  • Mannherz, H.G.: On the reversibility of the biochemical reactions of muscular contraction during the absorption of negative work. FEBS Lett.10, 233–236 (1970)

    Google Scholar 

  • Miller, A., Tregcar, R.T.: X-ray diffraction studies on insect muscle. Abstracts of the Winter Meeting of the British Biophys. Soc. London, 1967

  • Miller, A., Tregear, R.T.: X-ray studies on the structure and function of vertebrate and invertebrate muscle. In: Podolsky, R.J. (Ed.): Contractility of muscle cells and related processes, pp. 205–228. Englewood Cliffs, N.I.: Prentice Hall 1971

    Google Scholar 

  • Miller, A., Tregar, R.T.: Structure of insect fibrillar flight muscle in the presence and absence of ATP. J. molec. Biol.70, 85–104 (1972)

    Google Scholar 

  • Podolsky, R.J., Nolan, A.C., Zaveler, S.A.: Cross-bridge properties derived from muscle isotonic velocity transients. Proc. natn. Acad. Sci. USA64, 504–511 (1969)

    Google Scholar 

  • Podolsky, R.J., Nolan, A.C.: Cross-bridge properties derived from physiological studies of frog muscle fibres. In: Podolsky, R.J. (Ed.): Contractility of muscle cells and related processes, pp. 247–260. Engelwood Cliffs. N.J.: Prentice-Hall 1971

    Google Scholar 

  • Pringle, J.W.S., The contractile mechanism of insect fibrillar muscle. Prog. Biophys. molec. Biol.17, 1–60 (1967)

    Google Scholar 

  • Pringle, J.W.S., Tregear, R.T.: Mechanical properties of insect fibrillar muscle at large amplitudes of oscillation. Proc. Roy. Soc. B174, 33–50 (1969)

    Google Scholar 

  • Pybus, J., Tregear, R.T.: Estimates of force and time of actomyosin interaction in active muscle and the number interacting at any one time. cold Spr. Harb. Symp. quant. Biol.37, 655–660 (1972)

    Google Scholar 

  • Reedy, M.K., Holmes, K.C., Tregear, R.T.: Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature (Lond.)207, 1276–1280 (1966)

    Google Scholar 

  • Reedy, M.K.: Cross-bridges and periods in insect flight muscle. Am. Zoologist.7, 465–481 (1967)

    Google Scholar 

  • Reedy, M.K.: Ultrastructure of insect flight muscle. In: Podolsky, R.J. (Ed.): Contractility of muscle cells and related processes, pp. 229–234. Englewood Cliffs. N.J.: Prentice Hall 1971

    Google Scholar 

  • Rüegg, J.C.: ATP-driven oscillation of glycerol-extracted insect fibrillar muscle: mechano-chemical coupling. Am. Zoologist.7, 457–464 (1967)

    Google Scholar 

  • Rüegg, J.C., Tregear, R.T.: Mechanical factors affecting the ATPase activity of glycerol-extracted insect fibrillar flight muscle. Proc. Roy. Soc. B165, 497–512 (1966)

    Google Scholar 

  • Rüegg, J.C., Stumpf, H.: The coupling of power cutput and myofibrillar ATPase activity in glycerol-extracted insect fibrillar muscle at varying amplitude of ATP-driven oscillation. Pflügers Arch. ges. Physiol.305, 21–33 (1969a)

    Google Scholar 

  • Rüegg, J.C., Stumpf, H.: Activation of myofibrillar ATPase activity by extension of glycerol-extracted insect fibrillar muscle. Pflügers Arch. ges. Physiol.305, 34–46 (1969b)

    Google Scholar 

  • Rüegg, J.C., Steiger, G., Schädler, M.: Mechanical activation of the contractile system in skeletal muscle. Pflügers Arch. ges. Physiol.319, 139–145 (1970)

    Google Scholar 

  • Rüegg, J.C., Schädler, M., Steiger, G., Müller, G.: Effects of inorganic phosphate on the contractile mechanism. Pflügers Arch. ges. Physiol.325, 359–364 (1971)

    Google Scholar 

  • Rüegg, J.C., Ulbrich, M.: Stretch-induced formation of ATP-P32 in gkycerinated fibres of insect flight muscle. Experientia27, 45–46 (1971)

    Google Scholar 

  • Schädler, M.: Proportionale Aktivierung von ATPase Aktivität und Kontraktionsspannung durch Calciumionen in isolierten kontraktilen Strukturen verschiedener Muskelarten. Pflügers Arch. ges. Physiol.296, 70–90 (1967)

    Google Scholar 

  • Schädler, M., Steiger, G., Rüegg, J.C.: Mechanical activation and isometric oscillation in insect fibrillar muscle. Pflügers Arch. ges. Physiol.320, 217–229 (1971)

    Google Scholar 

  • Schaub, M.C., Watterson, J.G., Waser, P.G.: Cooperation between the two myosin heads interacting with actin in presence of ADP in myofibrils. Experieptia29, 316–318 (1973)

    Google Scholar 

  • Steiger, G., Rüegg, J.C.: Energetics and efficiency in the isolated contractile machinery of an insect fibrillar muscle at various frequencies of oscillation. Pflügers Arch. ges. Physiol.307, 1–21 (1969)

    Google Scholar 

  • Spudich, J.A., Huxley, H.E., Finch, J.: Regulation of skeletal muscle contraction. II. Structural studies on the interaction of the tropomyosin-troponin complex with actin. J. molec. Biol.72, 9–32 (1972)

    Google Scholar 

  • Squire, J.M.: General model of myosin filament structure. II. Myosin filament and cross-bridge interactions in vertebrate striated muscle. J. molec. Biol.72, 125–138 (1972)

    Google Scholar 

  • Thorson, J., White, D.C.S.: Distributed representations for actinmyosin interaction in the oscillatory contraction of muscle. Biophys. J.9, 360–390 (1969)

    Google Scholar 

  • Tregear, R.T.: The oscillation of insect flight muscle. In: Sanadi, D.R. (Ed.): Current topics in bioenergetics2, pp. 269–286. New York: Academic Press 1967

    Google Scholar 

  • Tregear, R.T., Miller, A.: Evidence concerning cross-bridge movement during muscle contraction. Nature (Lond.)222, 1184–1186 (1969)

    Google Scholar 

  • Trentham, D.R., Bardsley, R.G., Eccleston, J.F., Weeds, A.G.: Elementary processes of the magnesium ion-dependent ATPase activity of heavy meromyosin. Biochem. J.126, 635–644 (1972)

    Google Scholar 

  • Weber, A., Bremel, R.D.: Cooperative behaviour of functional unit of actin filament. Nature New Biol.238, 97–100 (1972)

    Google Scholar 

  • White, D.C.S.: Structural and mechanical properties of insect fibrillar flight muscle in the relaxed and rigor states. D. Phil. Thesis, University of Oxford (1967)

  • White, D.C.S., Thorson, J.: Phosphate starvation and the nonlinear dynamics of insect fibrillar flight muscle. J. gen. Physiol.60, 307–336 (1972)

    Google Scholar 

  • White, D.C.S.: Links between mechanical and biochemical kinetics of muscle. Cold. Spr. Harb. Symp. quant. Biol.37, 201–213 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaplain, R.A. On the contractile mechanism of insect fibrillar flight muscle IV. A quantitative chemo-mechanical model. Biol. Cybernetics 18, 137–153 (1975). https://doi.org/10.1007/BF00326685

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326685

Keywords

Navigation