Skip to main content
Log in

Detailed large-signal dynamic modelling of DFB laser structures and comparison with experiment

  • Invited Paper
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This paper describes the first general large-signal dynamic multiple-mode laser model that incorporates all the main mechanisms known to influence the dynamic behaviour of DFB laser structures with the exception of thermal effects: longitudinal mode spatial hole burning, carrier transport effects, nonlinear gain, and laser and submount parasitics. The time evolution of the output power and wavelength of all modes is predicted, and full spectra can be plotted as a function of time. The model has been extended to include an approximation to the effects of propagation down dispersive fibre, thereby allowing the simulation of filtered received eye diagrams. Detailed comparison of the model with the experimental performance of 2×λ/8 DFB lasers has shown good agreement, allowing the performance to be optimized, particularly with respect to longitudinal hole burning and carrier transport. The model is also applied to gain-switched operation of 2×λ/8 DFB structures, fast pulsing of three-section λ/4 DFB lasers, and the dynamic behaviour of complex coupling coefficient DFB laser structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. SODA, Y. KOTAKI, H. SUDO, H. ISHIKAWA, S. YAMAKOSHI and H. IMAI, IEEE J. Quantum Electron. QE 23(6) (1987) 804.

    Google Scholar 

  2. J. E. A. WHITEAWAY, G. H. B. THOMPSON, A. J. COLLAR and C. J. ARMISTEAD, IEEE J. Quantum Electron. QE 25(6) (1989) 1261.

    Google Scholar 

  3. P. VANKWIKELBERGE, F. BUYTAERT, A. FRANCHOIS, R. BAETS, P. I. KUINDERSMA and C. W. FREDRIKSZ, IEEE J. Quantum Electron. QE 25(11) (1989) 2239.

    Google Scholar 

  4. M. Yamaguchi, N. Henmi, H. Yamazaki and I. Mito, 12th IEEE International Semiconductor Laser Conference, Davos, Switzerland, 1990, paper E4, p. 66.

  5. J. E. A. WHITEAWAY, B. GARRETT, G. H. B. THOMPSON, A. J. COLLAR, C. J. ARMISTEAD and M. J. FICE, IEEE J. Quantum Electron. QE 28(5) (1992) 1277.

    Google Scholar 

  6. A. J. LOWERY, Electron. Lett. 28(16) (1992) 1548.

    Google Scholar 

  7. L. M. ZHANG and J. E. CARROLL, IEEE J. Quantum Electron. QE 28(3) (1992) 604.

    Google Scholar 

  8. J. Hong, W. P. Huang and T. Makino, IEEE J. Quantum Electron., submitted for publication.

  9. R. NAGARAJAN, T. FUKUSHIMA, M. ISHIKAWA, J. E. BOWERS, R. S. GEELS and L. A. COLDREN, IEEE Photon. Technol. Lett. 4(2) (1992) 121.

    Google Scholar 

  10. A. P. WRIGHT, B. GARRETT, G. H. B. THOMPSON and J. E. A. WHITEAWAY, Electron. Lett. 28(20) (1992) 1911.

    Google Scholar 

  11. G. P. AGRAWAL, IEEE J. Quantum Electron. QE 29(12) (1990) 1901.

    Google Scholar 

  12. H. E. LASSEN, H. WENZEL and B. TROMBORG, Electron. Lett. 29(12) (1993) 1124.

    Google Scholar 

  13. Y. CHAMPAGNE and N. MCCARTHY, J. Appl. Phys. 72(6) (1992) 2110.

    Google Scholar 

  14. U. BANDELOW, H. WENZEL and H.-J. WUNSCHE, Electron. Lett. 28(14) (1992) 1324.

    Google Scholar 

  15. J. KINOSHITA and K. MATSUMOTO, IEEE J. Quantum Electron. QE 25(6) (1989) 1324.

    Google Scholar 

  16. I. H. WHITE, P. S. GRIFFIN, M. J. FICE and J. E. A. WHITEAWAY, Electron. Lett. 28(13) (1992) 1257.

    Google Scholar 

  17. S. WANG, IEEE J. Quantum Electron. QE 10(4) (1974) 413.

    Google Scholar 

  18. K. UNGER, Z. Phys. 207 (1967) 322.

    Google Scholar 

  19. P. D. Greene, J. E. A. Whiteaway, G. D. Henshall R. W. Glew, C. M. Lowney, B. Bhumbra and D. J. Moule, International Symposium on GaAs and Related Compounds, Jersey, 1990 (Institute of Physics Conference Series no. 112) ch. 8, p. 555.

  20. P. S. GRIFFIN, I. H. WHITE and J. E. A. WHITEAWAY, Opt. Quantum Electron. 23 (1991) 1031.

    Google Scholar 

  21. A. GRABMAIER, G. FUCHS, A. HANGLEITER, R. W. GLEW, P. D. GREENE, and J. E. A. WHITEAWAY, J. Appl. Phys. 70(4) (1991) 2467.

    Google Scholar 

  22. G. FUCHS, J. HORER, A. HANGLEITER, V. HARLE, F. SCHOLZ, R. W. GLEW and L. GOLDSTEIN, Appl. Phys. Lett. 60(2) (1992) 231.

    Google Scholar 

  23. H. K. Tsang, Calculation of change in refractive index associated with electrical injection of carriers into InGaAsP, School of Physics, University of Bath, private communication.

  24. G. H. B. THOMPSON, Physics of Semiconductor Laser Devices (Wiley, Chichester, 1980) p. 117.

    Google Scholar 

  25. A. P. WRIGHT, A. T. R. BRIGGS, A. D. SMITH, R. S. BAULCOMB and K. J. WARBRICK, Electron. Lett. 29(21) (1993) 1848.

    Google Scholar 

  26. H. KOGELNIK and C. V. SHANK, J. Appl. Phys. 43(5) (1972) 2327.

    Google Scholar 

  27. K. DAVID, G. MORTHIER, P. VANKWIKELBERGE and R. BAETS, Electron. Lett. 26(4) (1990) 238.

    Google Scholar 

  28. K. David, G. Morthier, P. Vankwikelberge and R. Baets, 12th IEEE International Semiconductor Laser Conference, Davos, 1990, p. 202.

  29. Y. Nakano, Y. Deguchi, K. Ikeda, Y. Luo and K. Tada, 12th IEEE International Semiconductor Laser Conference, Davos, 1990, p. 72.

  30. L. OLOFSSON and T. G. BROWN, IEEE J. Quantum Electron. QE-28(6) (1992) 1450.

    Google Scholar 

  31. A. J. LOWERY, Electron. Lett. 28(25) (1992) 2295.

    Google Scholar 

  32. A. J. LOWERY and D. NOVAK, Electron. Lett. 29(5) (1993) 461.

    Google Scholar 

  33. G. H. B. THOMPSON, Physics of Semiconductor Laser Devices (Wiley, Chichester, 1980) p. 481.

    Google Scholar 

  34. K. DAVID, J. BUUS and R. G. BAETS, IEEE J. Quantum Electron. QE-28(2) (1992) 427.

    Google Scholar 

  35. M.-C. AMANN, Appl. Phys. Lett. 50(16) (1987) 1038.

    Google Scholar 

  36. Report on gain and dg/dN measurements for MQWs, RACE 1057 Deliverable no. 7, September 1989 (University of Stuttgart measurements on STC material) (not available in open literature).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whiteaway, J.E.A., Wright, A.P., Garrett, B. et al. Detailed large-signal dynamic modelling of DFB laser structures and comparison with experiment. Opt Quant Electron 26, S817–S842 (1994). https://doi.org/10.1007/BF00326664

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326664

Keywords

Navigation