Skip to main content
Log in

Analysis of the effects of doping and barrier design on the small-signal modulation characteristics of long-wavelength multiple quantum well lasers

  • Contributed Paper
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This theoretical work has modelled the small signal response of InGaAsP and InGaAlAs multiple quantum well (MQW) lasers based on an ambipolar carrier transport model. The MQW parameters such as barrier bandgap, barrier width and the number of quantum wells have been optimized for high-speed modulation. The effect of the p-type doping and the strain of the InGaAs well have also been investigated.

For the InGaAsP-based system, the optimization for maximum 3 dB bandwitdth shows that the optimum width is about 5 nm for 1.1 μm barriers and 7 nm for 1.2 μm barriers. The optimum barrier bandgap wavelength is about 1.1 μm for the barrier width of 6 nm, about 1.15 μm for 8 nm and 10 nm barriers. The p-doped MQW exhibits a higher modulation bandwidth because of its high differential gain and improved carrier distribution among the MQWs. The compressively strained InGaAs quantum well system has the potential for a higher modulation bandwidth. For the InGaAlAs-based system, the optimization for maximum 3 dB bandwidth shows that the optimum width is about 4 nm for a barrier wavelength of 1.10 μm, and 6 nm for 1.2 μm. The optimum barrier bandgap wavelength is about 1.1 μm for a barrier width of 4 nm, and about 1.2 μm for 6, 8 and 10 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. ARAKAWA and A. YARIV, J. Quantum Electron. 21 (1985) 1666.

    Google Scholar 

  2. M. AOKI, K. UOMI, T. TSUCHIYA, M. SUZUKI and N. CHINONE, Electron. Lett. 26 (1990) 1841.

    Google Scholar 

  3. T. FUKUSHIMA, R. NAGARAJAN, J. E. BOWERS, R. A. LOGAN and T. TANBUNEK, Photon. Technol. Lett. 3 (1991) 691.

    Google Scholar 

  4. R. NAGARAJAN, T. FUKUSHIMA, J. E. BOWERS, R. S. GEELS and L. A. COLDREN, Electron. Lett. 27 (1991) 1058.

    Google Scholar 

  5. T. FUKUSHIMA, J. E. BOWERS, R. A. LOGAN, T. TANBUN-EK and H. TEMKIN, Appl. Phys. Lett. 58 (1991) 1244.

    Google Scholar 

  6. R. NAGARAJAN, T. FUKUSHIMA, J. E. BOWERS, R. S. GEELS and L. A. COLDREN, Appl. Phys. Lett. 57 (1991) 2326.

    Google Scholar 

  7. M. C. TATHAM, C. P. SELTZER, S. D. PERRIN and D. M. COOPER, Electron. Lett. 27 (1991) 1278.

    Google Scholar 

  8. R. NAGARAJAN, M. ISHIKAWA, T. FUKUSHIMA, R. S. GEELS and J. E. BOWERS, J. Quantum Electron. 28 (1992) 1990.

    Google Scholar 

  9. M. ISHIKAWA, R. NAGARAJAN, T. FUKUSHIMA, J. WASSERBAUER and J. E. BOWERS J. Quantum Electron. 28 (1992) 2230.

    Google Scholar 

  10. R. NAGARAJAN, T. FUKUSHIMA, M. ISHIKAWA, J. E. BOWERS, R. S. GEELS and L. A. COLDREN, Photon. Technol. Lett. 4 (1992) 121.

    Google Scholar 

  11. R. NAGARAJAN, T. FUKUSHIMA, S. W. CORZINE and J. E. BOWERS, Appl. Phys. Lett. 59 (1991) 1835.

    Google Scholar 

  12. J. LEE and M. O. VASSELL, J. Quantum Electron. 28 (1992) 624.

    Google Scholar 

  13. K. UOMI, M. AOKI, T. TSUCHIYA, M. SUZUKI and N. CHINONE, Photon. Technol. Lett. 3 (1991) 493.

    Google Scholar 

  14. M. CAVELIER, J.-M. LOURTIOZ, J.-M. XIE and L. CHUSSEAU, Electron. Lett. 27 (1991) 513.

    Google Scholar 

  15. M. C. TATHAM, I. F. LEALMAN, C. P. SELTZER, L. D. WESTBROOK and D. M. COOPER, J. Quantum Electron. 28 (1992) 408.

    Google Scholar 

  16. N. TESSLER, R. NAGAR, D. ABRAHAM and G. EISENSTEIN, Appl. Phys. Lett. 60 (1992) 665.

    Google Scholar 

  17. N. TESSLER and G. EISENSTEIN, Appl. Phys. Lett. 62 (1993) 10.

    Google Scholar 

  18. B. DEVEAUD, J. SHAH, T. C. DAMEN and W. T. TSANG, Appl. Phys. Lett. 52 (1988) 1886.

    Google Scholar 

  19. S. C. KAN, D. VASSILOVSKI, T. C. WU and K. Y. LAU, Appl. Phys. Lett. 52 (1992) 752.

    Google Scholar 

  20. H. KROEMER and H. OKAMOTO, Jpn J. Appl. Phys. 23 (1984) 970.

    Google Scholar 

  21. T. Ishikawa, R. Nagarajan and J. E. Bowers, submitted to J. Lightwave Technol.

  22. K. J. VAHALA and C. E. ZAH, Appl. Phys. Lett. 52 (1988) 1945.

    Google Scholar 

  23. K. J. VAHALA and C. E. ZAH, Appl. Phys. Lett. 59 (1991) 3230.

    Google Scholar 

  24. P. A. MORTON, R. A. LOGAN, T. TANBUN-EK, P. F. SCIORTINO JR, A. M. SERGENT, R. K. MONTGOMERY and B. T. LEE, Electron. Lett. 28 (1992) 2156.

    Google Scholar 

  25. J. D. Ralston, S. Weisser, E. C. Larkins, I. Esquivias, P. J. Tasker, J. Fleissner and J. Rosenzweig, 13th IEEE International Laser Conference, 1992 PD-5.

  26. K. UOMI, Jpn J. Appl. Phys. 29 (1990) 81.

    Google Scholar 

  27. K. UOMI, T. MISHIMA and N. CHINONE, Jpn J. Appl. Phys. 29 (1990) 88.

    Google Scholar 

  28. Y. SUEMATSU, Semiconductor Lasers and Optical Integrated Circuits (Ohm Publishing, Tokyo, 1984) p. 74.

    Google Scholar 

  29. T. ISHIKAWA and J. E. BOWERS, J. Quantum Electron. 30 (1994) 562.

    Google Scholar 

  30. W. RIDEOUT, W. F. SHARFIN, E. S. KOTELES, M. O. VASSELL and B. ELMAN, Photon. Technol. Lett. 3 (1991) 784.

    Google Scholar 

  31. A. GRABMAIER, M. SCHOFTHALER, A. HANGLEITER, C. KAZMIERSKI, M. BLEZ and A. OUGAZZADEN, Appl. Phys. Lett. 62 (1993) 52.

    Google Scholar 

  32. N. TESSLER and G. EISENSTEIN, Appl. Phys. Lett. 62 (1993) 10.

    Google Scholar 

  33. N. TESSLER and G. EISENSTEIN, Photon. Technol. Lett 5 (1993) 291.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishikawa, T., Nagarajan, R. & Bowers, J.E. Analysis of the effects of doping and barrier design on the small-signal modulation characteristics of long-wavelength multiple quantum well lasers. Opt Quant Electron 26, S805–S816 (1994). https://doi.org/10.1007/BF00326663

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326663

Keywords

Navigation