Skip to main content
Log in

Ultrafast carrier dynamics in In1−x Ga x As/InP heterostructures

  • Invited Paper
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We investigate carrier capture and carrier transport in the InGaAs/InP material system by luminescence spectroscopy with femtosecond time resolution. Comparative studies are performed on samples of different well width, barrier width and gallium mole fraction of the InGaAs layers. The investigations focus on excitation conditions that are comparable to those for semiconductor laser operation. Firm data on carrier dynamics are presented for these conditions. We find that the overall transfer rates of electrons and holes are similar and independent of well width. Furthermore, the transfer times show a linear dependence on barrier width. From experimental and model calculation results we derive some guidelines for the design of high-frequency laser devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. NAGARAJAN, T. FUKUSHIMA, S. W. CORZINE and J. E. BOWERS, Appl. Phys. Lett. 59 (1991) 1835.

    Google Scholar 

  2. R. NAGARAJAN, T. FUKUSHIMA, M. ISHIKAWA, J. E. BOWERS, R. S. GEELS and L. A. COLDREN, IEEE Photon. Technol. Lett 4 (1992) 121.

    Google Scholar 

  3. S. C. KAN, D. VASSILOVSKI, T. C. WU and K. Y. LAU, Appl. Phys. Lett. 61 (1992) 752.

    Google Scholar 

  4. S. C. KAN, D. VASSILOVSKI, T. C. WU and K. Y. LAU, Appl. Phys. Lett. 62 (1993) 2307.

    Google Scholar 

  5. A. GRABMEIER, M. SCHÖFTHALER, A. HANGLEITER, C. KAZMIERSKI, M. BLEZ and A. OUGAZZADEN, Appl. Phys. Lett. 62 (1993) 52.

    Google Scholar 

  6. D. J. WESTLAND, D. MIHAILOVIC, J. F. RYAN and M. D. SCOTT, Appl. Phys. Lett. 51 (1987) 590.

    Google Scholar 

  7. H. HILLMER, G. MAYER, A. FORCHEL, K. S. LÖCHNER and E. BAUSER, Appl. Phys. Lett. 49 (1986) 948.

    Google Scholar 

  8. A. WELLER, P. THOMAS, J. FELDMANN, G. PETER and E. O. GÖBEL, Appl. Phys. A 48 (1989) 509.

    Google Scholar 

  9. P. W. M. BLOM, R. F. MOLS, J. E. M. HAVERKORT, M. R. LEYS and J. H. WOLTER, Superlatt. Microstruct. 7 (1990) 319.

    Google Scholar 

  10. G. BACHER, C. HARTMANN, H. SCHWEIZER, T. HELD, G. MAHLER and H. NICKEL, Phys. Rev. B 47 (1993) 9545.

    Google Scholar 

  11. H. SHICHIJO, R. M. KOLBAS and JR N. HOLONYAK, Solid State Commun. 27 (1978) 1029.

    Google Scholar 

  12. N. HOLONYAK, R. M. KOLBAS, R. D. DUPUIS and P. D. DAPKUS, IEEE J. Quantum Electron. 16 (1980) 170.

    Google Scholar 

  13. J. Y. TANG, K. HESS, JR N. HOLONYAK, J. J. COLEMAN and P. D. DAPKUS, J. Appl. Phys. 53 (1982) 6043.

    Google Scholar 

  14. J. A. BRUM and G. BASTARD, Phys. Rev. B 33 (1986) 1420.

    Google Scholar 

  15. M. BABIKER and B. K. RIDLEY, Superlatt. Microstruct. 2 (1986) 287.

    Google Scholar 

  16. M. BABIKER, M. P. CHAMBERLAIN, A. GHOSAL and B. K. RIDLEY, Surface Sci. 196 (1988) 422.

    Google Scholar 

  17. B. DEVEAUD, A. CHOMETTE, D. MORRIS and A. REGRENY, Solid State Commun. 85 (1993) 367.

    Google Scholar 

  18. P. W. M. BLOM, J. E. M. HAVERKORT, P. J. VAN HALL and J. H. WOLTER, Appl. Phys. Lett. 62 (1993) 1490.

    Google Scholar 

  19. E. O. GÖBEL, H. JUNG, J. JUHL and K. PLOOG, Phys. Rev. Lett. 51 (1983) 1588.

    Google Scholar 

  20. J. FELDMANN, G. PETER, E. O. GÖBEL, K. LEO, H.-J. POLLAND, K. PLOOG, K. FUJIWARA and T. NAKAYAMA, Appl. Phys. Lett. 51 (1987) 226.

    Google Scholar 

  21. H.-J. POLLAND, K. LEO, K. PLOOG, J. FELDMANN, G. PETER, E. O. GÖBEL, K. FUJIWARA and T. NAKAYAMA, Solid-State Electron. 31(1988)341.

    Google Scholar 

  22. H.-J. POLLAND, K. LEO, K. ROTHER, K. PLOOG, J. FELDMANN, G. PETER, E. O. GÖBEL, K. FUJIWARA, T. NAKAYAMA and Y. OTHA, Phys. Rev. B 38 (1988) 7635.

    Google Scholar 

  23. H. HILLMER, A. FORCHEL, T. KUHN, G. MAHLER and H. P. MEIER, Phys. Rev. B 43 (1991) 13992.

    Google Scholar 

  24. B. DEVEAUD, J. SHAH, T. C. DAMEN and W. T. TSANG, Appl. Phys. Lett. 52 (1988) 1886.

    Google Scholar 

  25. N. OGASAWARA, A. FUJIWARA, N. OHGUSHI, S. FUKATSU, Y. SHIRAKI, Y. KATAYAMA and R. ITO, Phys. Rev. B 42 (1990) 9562.

    Google Scholar 

  26. D. MORRIS, B. DEVEAUD, A. REGRENY and P. AUVRAY, Phys. Rev. B 47 (1993) 6819.

    Google Scholar 

  27. R. Schwedler, B. Gallmann, K. Wolter, D. Grützmacher, M. Stollenwerk and H. Kurz, in Proceedings of the International Conference on Advanced Materials, ICAM 91, Strasburg, 1991, edited by K. J. Bachmann, H.-L. Hwang and C. Schwab, p. 161.

  28. D. GRÜTZMACHER, J. HERGETH, F. REINHARDT, K. WOLTER and P. BALK, J. Electron. Mater. 19 (1990) 471.

    Google Scholar 

  29. J. CAMASSEL, K. WOLTER, S. JUILLAGUET, R. SCHWEDLER, E. MASSONE, B. GALLMANN and J. P. LAURENTI, Mater. Sci. Eng. B 20 (1993) 62.

    Google Scholar 

  30. D. HULIN, A. MINGUS, A. ANTONETTI, I. LEDOUX, J. BADAN, J. L. OUDAR and J. ZYSS, Appl. Phys. Lett. 49 (1986) 761.

    Google Scholar 

  31. J. SHAH, IEEE J. Quantum Electron. 24 (1988) 276.

    Google Scholar 

  32. Some experiments are performed with a dispersive setup as depicted in Ref. 37.

  33. T. ELSÄSSER, J. SHAH, L. ROTA and P. LUGLI, Phys. Rev. Lett. 66 (1991) 1757.

    Google Scholar 

  34. X. Q. ZHOU, K. LEO, and H. KURZ, Phys. Rev. B 45 (1992) 3886.

    Google Scholar 

  35. L. ROTA, P. LUGLI, T. ELSAESSER and J. SHAH, Phys. Rev. B 47 (1993) 4226.

    Google Scholar 

  36. R. KERSTING, X. Q. ZHOU, K. WOLTER D. GRÜTZMACHER and H. KURZ, Superlatt. Microstruct. 7 (1990) 345.

    Google Scholar 

  37. R. KERSTING, R. SCHWEDLER, K. WOLTER, K. WEO and H. KURZ, Phys. Rev. B 46 (1992) 1639.

    Google Scholar 

  38. D. Y. OBERLI, J. SHAH, J. L. JEWELL and T. C. DAMEN, Appl. Phys. Lett. 54 (1989) 1028.

    Google Scholar 

  39. M. R. X. BARROS, C. BECKER, D. MORRIS, B. DEVEAUD, A. REGRENY and F. BEISSER, Phys. Rev. B 47 (1993) 10951.

    Google Scholar 

  40. O. MADELUNG, M. SCHULZ and H. WEISS (eds) Numerical Data and Functional Relationships in Science and Technology, Landolt-Börnstein, New Series, Group III, vol. 17 (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  41. S. WEISS, J. M. WIESENFELD, D. S. CHEMLA, G. RAYBON, G. SUCHA, M. WEGENER, G. EISENSTEIN, C. A. BURRUS, A. G. DENTAI, U. KOREN, B. I. MILLER, H. TEMKIN, R. A. LOGAN, and T. TANBUN-EK, Appl. Phys. Lett. 60 (1992) 9.

    Google Scholar 

  42. X. Q. ZHOU, K. LEO, and H. KURZ, Phys. Rev. B 45 (1992) 3886.

    Google Scholar 

  43. However, similar results can be achieved with other shapes of W(z). This will modify the fit parameter τcap, but not the transfer rate as given by Equation 4.

  44. P. J. A. THIJS, L. F. TIEMEIJER, P. I. KUINDERSMA, J. J. M. BINSMA and T. VAN DONGEN, IEEE J. Quantum Electron. 27 (1991) 1426.

    Google Scholar 

  45. R. KERSTING, A. KOHL, T. VOSS, K. LEO and H. KURZ, Appl. Phys. A 55 (1992) 596.

    Google Scholar 

  46. R. SCHWEDLER, B. GALLMANN, K. WOLTER, A. KOHL, K. LEO and H. KURTZ, Mater. Sci. Eng. B20 (1993) 66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kersting, R., Schwedler, R., Kohl, A. et al. Ultrafast carrier dynamics in In1−x Ga x As/InP heterostructures. Opt Quant Electron 26, S705–S718 (1994). https://doi.org/10.1007/BF00326657

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326657

Keywords

Navigation