Skip to main content
Log in

Quantum-mechanical versus semiclassical capture and transport properties in quantum well laser structures

  • Contributed Paper
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We have studied experimentally and modelled theoretically the capture properties and transport mechanisms of electrons and holes in laser structures. We describe first the extreme case where the barrier thickness is very large: then semiclassical drift-diffusion equations may be applied and quantum-mechanical effects at the edge of the well are negligible. A second extreme case occurs when the barrier is narrow enough for quantum mechanics to apply fully. There, strong variations of the capture time with the well width are expected and observed. In real laser structures, dimensions are such that we are in an intermediate case and both aspects have to be taken into account. We give some typical values for diffusion/capture mechanism induced delay times in such a case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. SCHICHIJO, R. M. KOLBAS, N. HOLONYAK Jr, R. D. DUPUIS and P. D. DAKPUS, Solid State Commun. 27 (1978) 1029.

    Google Scholar 

  2. J. Y. TANG, K. HESS, N. HOLONYAK Jr, J. J. COLEMAN and P. D. DAKPUS, J. Appl. Phys. 53 (1982) 6043.

    Google Scholar 

  3. Y. C. LO, K. Y. HSIEH and R. M. KOLBAS, Appl. Phys. Lett. 52 (1988) 1853.

    Google Scholar 

  4. S. V. KOZYREV and A. YA SHIK, Sov. Phys. Semicond. 19 (1985) 1024.

    Google Scholar 

  5. J. A. BRUM and G. BASTARD, Phys. Rev. B33 (1985) 1420.

    Google Scholar 

  6. M. BABIKER and B. K. RIDLEY, Superlattices and Microstructures 2 (1986) 287.

    Google Scholar 

  7. P. W. M. BLOM, J. E. M. HAVERKORT and J. H. WOLTER, Appl. Phys. Lett. 58 (1991) 2767.

    Google Scholar 

  8. B. DEVEAUD, D. MORRIS, A. CHOMETTE and A. REGRENY, Solid State Commun. 85 (1993) 367.

    Google Scholar 

  9. J. SHAH and T. C. DAMEN, Appl. Phys. Lett. 52 (1988) 1291.

    Google Scholar 

  10. A. WELLER, P. THOMAS, J. FELDMAN, G. PETER and E. O. GÖBEL, Appl. Phys. A48 (1989) 509.

    Google Scholar 

  11. H. UCHIKI, T. KOBAYASHI and E. TOKUNAGA, Phys. Stat. Sol. B150 (1988) 667.

    Google Scholar 

  12. P. W. M. BLOM, C. SMIT, J. E. M. HAVERKORT and J. H. WOLTER, Phys. Rev. B47 (1993) 2072.

    Google Scholar 

  13. B. DEVEAUD, A. CHOMETTE, B. LAMBERT, A. REGRENY, J. SHAH and T. DAMEN, IEEE J. Quantum Electron. QE25 (1988) 2773.

    Google Scholar 

  14. B. LAMBERT, B. DEVEAUD, A. CHOMETTE and A. REGRENY, J. Lumin. 44 (1989) 1027.

    Google Scholar 

  15. D. J. WESTLAND, D. MIHAILOVIC, J. F. RYAN and M. D. SCOTT, Appl. Phys. Lett. 51 (1987) 590.

    Google Scholar 

  16. B. DEVEAUD, F. CLÉROT, A. CHOMETTE, P. AUVRAY, M. GAUNEAU and A. REGRENY, Appl. Phys. Lett. 58 (1991) 2364.

    Google Scholar 

  17. D. Y. OBERLI, J. SHAH, J. L. LEWEL, T. C. DAMEN and N. CHAND, Appl. Phys. Lett. 54 (1989) 1028.

    Google Scholar 

  18. U. CEBULLA, G. BACHER, A. FORCHEL, D. SCHMITZ, H. JÜRGENSEN and M. RAZEGHI, Appl. Phys. Lett. 55 (1989) 933.

    Google Scholar 

  19. R. KERSTING, R. SCHWELDER, K. WOLTER, K. LEO and H. KURZ, Phys. Rev. B46 (1992) 1639.

    Google Scholar 

  20. D. MORRIS, B. DEVEAUD, A. REGRENY and P. AUVRAY, Phys. Rev. B47 (1993) 6819.

    Google Scholar 

  21. M. R. X. BARROS, P. C. BECKER, D. MORRIS, B. DEVEAUD, A. REGRENY and F. BEISSER, Phys. Rev. B47 (1993) 10951.

    Google Scholar 

  22. B. DEVEAUD, F. CLÉROT, A. REGRENY, K. FUJIWARA, K. MITSUNAGA and J. OTHA, Appl. Phys. Lett. 55 (1989) 2446.

    Google Scholar 

  23. S. MORIN, B. DEVEAUD, F. CLÉROT, K. FUJIWARA and K. MITSUNAGA, IEEE J. Quantum Electron. QE27 (1991) 1669.

    Google Scholar 

  24. H. J. POLLAND, K. LEO, K. ROTHER, K. PLOOG, J. FELDMANN, G. PETER, E. O. GÖBEL, K. FUJIWARA, T. NAKAYAMA and Y. OTHA, Phys. Rev. 38 (1988) 7635.

    Google Scholar 

  25. J. A. BRUM, T. WEIL, J. NAGLE and B. VINTER, Phys. Rev. B34 (1986) 2381.

    Google Scholar 

  26. P. W. M. BLOM, J. E. M. HAVERKORT and J. H. WOLTER, Appl. Phys. Lett. 58 (1991) 2767.

    Google Scholar 

  27. P. A. MORTON, R. A. LOGAN, T. TANBUN-EK, P. F. SCIORTINO, A. M. SERGENT, R. K. MONTGOMERY and B. T. LEE, Electron. Lett. 28 (1992) 2156.

    Google Scholar 

  28. L. F. LESTER, W. J. SCHAFF, X. SONG and L. F. EASTMAN, IEEE Trans. Photon. Technol. Lett. 3 (1991) 1049.

    Google Scholar 

  29. S. C. KAN, D. VASSILOVSKI, T. C. WU and K. Y. LAU, Appl. Phys. Lett. 61 (1992) 752.

    Google Scholar 

  30. R. NAGARAJAN, T. FUKUSHIMA, S. W. CORZINE and J. E. BOWERS, Appl. Phys. Lett. 59 (1991) 1835.

    Google Scholar 

  31. N. TESSLER and G. EISENSTEIN, IEEE J. Quantum Electron. QE29 (1993) 1586.

    Google Scholar 

  32. B. Vinter, F. Luc, P. Bois, L. Thibaudeau and E. Rosencher, to appear in Solid State Electron.

  33. J. M. GÉRARD, B. DEVEAUD and A. REGRENY, Appl. Phys. Lett. 63 (1993) 240.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deveaud, B., Morris, D., Regreny, A. et al. Quantum-mechanical versus semiclassical capture and transport properties in quantum well laser structures. Opt Quant Electron 26, S679–S689 (1994). https://doi.org/10.1007/BF00326655

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326655

Keywords

Navigation