Skip to main content
Log in

Carrier transport effects in quantum well lasers: an overview

  • Invited Paper
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Early theoretical predictions and later experimental work have shown that lasers with quantum well active areas have enhanced differential gain over bulk lasers. The resonance frequency in a semiconductor laser is proportional to the square root of the differential gain. The resonance frequency is directly related to the modulation bandwidth, and the enhancement in the intrinsic differential gain led to theoretical predictions of increased modulation bandwidth in quantum well lasers. This enhancement in the modulation bandwidth proved to be elusive initially, and later it was realized that other factors, namely carrier transport effects, played a more dominant role in the high-speed properties of quantum well lasers. Carrier transport effects, in addition to bandfilling, affect a wide range of static and dynamic properties of the quantum well lasers. This paper will present an overview of our present understanding of the carrier transport processes and their effects in quantum well lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. NAGARAJAN, T. FUKUSHIMA, M. ISHIKAWA, J. E. BOWERS, R. S. GEELS and L. A. COLDREN, IEEE Photon. Technol. Lett. 4 (1992) 121.

    Google Scholar 

  2. A. P. WRIGHT, B. GARRETT, G. H. B. THOMPSON and J. E. A. WHITEAWAY, Electron. Lett. 28 (1992) 1911.

    Google Scholar 

  3. A. GRABMAIER, M. SCHÖFTHALER, A. HANGLEITER, C. KAZMIERSKI, M. BLEZ and A. OUGAZZADEN, Appl. Phys. Lett. 62 (1993) 52.

    Google Scholar 

  4. R. NAGARAJAN, M. ISHIKAWA, T. FUKUSHIMA, R. S. GEELS and J. E. BOWERS, J. Quantum Electron. 28 (1992) 1990.

    Google Scholar 

  5. M. ISHIKAWA, R. NAGARAJAN, T. FUKUSHIMA, J. WASSERBAUER and J. E. BOWERS, IEEE J. Quantum Electron. 28 (1992) 2230.

    Google Scholar 

  6. H. Yamazaki, M. Yamaguchi, M. Kitamura and I. Mito, Dig. 13th IEEE Int. Semiconductor Laser Conf. (1992) p. 174.

  7. R. NAGARAJAN and J. E. BOWERS, J. Quantum Electron. 29 (1993) 1601.

    Google Scholar 

  8. H. HIRAYAMA, J. YOSHIDA, Y. MIYAKE and M. ASADA, Appl. Phys. Lett. 61 (1992) 2398.

    Google Scholar 

  9. N. TESSLER and G. EISENSTEIN, Appl. Phys. Lett. 62 (1993) 10.

    Google Scholar 

  10. H. HILLMER, A. FORCHEL, T. KUHN, G. MAHLER and H. P. MEIER, Phys. Rev. B43 (1991) 13992.

    Google Scholar 

  11. N. TESSLER and G. EISENSTEIN, IEEE Photon. Technol. Lett. 5 (1993) 291.

    Google Scholar 

  12. B. DEVEAUD, J. SHAH and T. C. DAMEN, Phys. Rev. Lett. 58 (1987) 2582.

    Google Scholar 

  13. P. W. M. BLOM, R. F. MOLS, J. E. M. HAVERKORT, M. R. LEY and J. H. WOLTER, Superlattices and Microstructures 7 (1990) 319.

    Google Scholar 

  14. S. C. KAN, D. VASSILOVSKI, T. C. WU and K. Y. LAU, Appl. Phys. Lett. 61 (1992) 752.

    Google Scholar 

  15. H. SCHNEIDER and K. V. KLITZING, Phys. Rev. B 38 (1988) 6160.

    Google Scholar 

  16. H. KROEMER and H. OKAMOTO, Jpn. J. Appl. Phys. 23 (1984) 970.

    Google Scholar 

  17. G. BASTARD, Wave Mechanics Applied to Semiconductor Heterostructures (Wiley, New York, 1988) p. 14.

    Google Scholar 

  18. N. TESSLER, R. NAGAR and G. EISENSTEIN, IEEE J. Quantum Electron. 28 (1992) 2242.

    Google Scholar 

  19. N. SUZUKI and M. ISHIKAWA, IEEE Photon. Technol. Lett. 5 (1993) 767.

    Google Scholar 

  20. R. NAGARAJAN, T. FUKUSHIMA, S. W. CORZINE and J. E. BOWERS, Appl. Phys. Lett. 59 (1991) 1835.

    Google Scholar 

  21. A. HANGLEITER, A. GRABMAIER and G. FUCHS, Appl. Phys. Lett. 62 (1993) 2316.

    Google Scholar 

  22. L. Davis, Y. Lam, Y.-C. Chen, S. Sethi, J. Singh and P. Battacharya, Abstr. Electronic Materials Conf., Santa Barbara (1993) p. A-10.

  23. T. C. WU, S. C. KAN, D. VASSILOVSKI, K. Y. LAU, C. E. ZAH, B. PATHAK and T. P. LEE, Appl. Phys. Lett. 60 (1992) 1794.

    Google Scholar 

  24. J. E. BOWERS, Optoelectronic Technology and Lightwave Communications Systems, edited by C. Lin (Van Nostrand Reinhold, New York, 1989) p. 299.

    Google Scholar 

  25. H. Nobuhara, K. Nakajima, K. Tanaka, T. Fujii, T. Abe and K. Wakao, Dig. Conf. on Optical Fiber Commun., San Jose (1993) 62.

  26. W. RIDEOUT, W. F. SHARFIN, E. S. KOTELES, M. O. VASSELL and B. ELMAN, IEEE Photon. Technol. Lett. 3 (1991) 784.

    Google Scholar 

  27. R. OLSHANSKY, P. HILL, V. LANZISERA and W. POWAZINIK, IEEE J. Quantum Electron. 23 (1987) 1410.

    Google Scholar 

  28. R. NAGARAJAN, R. P. MIRIN, T. E. REYNOLDS and J. E. BOWERS, Electron. Lett. 29 (1993) 1688.

    Google Scholar 

  29. J. NAGLE, S. HERSEE, M. KRAKOWSKI, T. WELL and C. WEISBUCH, Appl. Phys. Lett. 49 (1986) 1325.

    Google Scholar 

  30. R. NAGARAJAN, T. KAMIYA and A. KUROBE, IEEE J. Quantum Electron. 25 (1989) 1161.

    Google Scholar 

  31. B. ZHAO, T. R. CHEN, Y. YAMADA, Y. H. ZHUANG, N. KUZE and A. YARIV, Appl. Phys. Lett. 61 (1992) 1907.

    Google Scholar 

  32. K. KIKUCHI and T. OKOSHI, IEEE J. Quantum Electron. 21 (1985) 1814.

    Google Scholar 

  33. T. OKOSHI and K. KIKUCHI, Coherent Optical Fiber Communications (KTK Scientific, Tokyo, 1988) p. 67.

    Google Scholar 

  34. Ch. HARDER, J. KATZ, S. MARGALIT, J. SHACHAM and A. YARIV, IEEE J. Quantum Electron. 18 (1982) 333.

    Google Scholar 

  35. R. NAGARAJAN, M. ISHIKAWA and J. E. BOWERS, Electron. Lett. 28 (1992) 846.

    Google Scholar 

  36. T. L. KOCH and J. E. BWERS, Electron. Lett. 20 (1984) 1038.

    Google Scholar 

  37. T. L. KOCH and R. A. LINKE, Appl. Phys. Lett. 48 (1986) 613.

    Google Scholar 

  38. B. ZHAO, T. R. CHEN, S. WU, Y. H. ZHUANG, Y. YAMADA and A. YARIV, Appl. Phys. Lett. 62 (1993) 1591.

    Google Scholar 

  39. P. R. CLAISSE and G. W. TAYLOR, Electron. Lett. 28 (1992) 1991.

    Google Scholar 

  40. G. W. TAYLOR and P. R. CLAISSE, Appl. Phys. Lett. 62 (1993) 723.

    Google Scholar 

  41. H. SHICHIJO, R. M. KOLBAS, N. HOLONYAK Jr, R. D. DUPUIS and P. D. DAPKUS, Solid State Commun. 27 (1978) 1029.

    Google Scholar 

  42. M. P. KESSLER, C. S. HARDER and E. E. LATTA, Appl. Phys. Lett. 59 (1991) 2775.

    Google Scholar 

  43. P. BLOOD, A. I. KUCHARSKA, J. P. JACOBS and K. GRIFFITHS, J. Appl. Phys. 70 (1991) 1144.

    Google Scholar 

  44. R. O. MILES, M. A. DUPERTUIS, F. K. REINHART and P. M. BROSSON, IEE Proc., Pt J 139 (1992) 33.

    Google Scholar 

  45. W. F. Sharfin, W. Rideout, E. Koteles, J. Schlafer, B. Elman, M. Vassell, D. Crawford, J. Benoit, P. Brosson and B. Fernier, Proc. 17th ECOC/8th IOOC (1991) p. 133.

  46. M. SHICHIJO, R. M. KOLBAS, N. HOLONYAK Jr, R. D. DUPUIS and P. D. DAPKUS, Solid State Commun. 27 (1978) 1029.

    Google Scholar 

  47. J. Y. TANG, K. HESS, N. HOLONYAK Jr, J. J. COLEMAN and P. D. DAPKUS, J. Appl. Phys. 53 (1982) 6043.

    Google Scholar 

  48. J. A. BRUM and G. BASTARD, Phys. Rev. B 33 (1986) 1420.

    Google Scholar 

  49. J. A. BRUM, T. WEIL, J. NAGLE and B. VINTER, Phys. Rev. B 34 (1986) 2381.

    Google Scholar 

  50. M. BABIKER and B. K. RDLEY, Superlattices and Microstructures 2 (1986) 287.

    Google Scholar 

  51. P. W. M. BLOM, J. E. M. HAVERKORT, and J. H. WOLTER, Appl. Phys. Lett. 58 (1991) 2767.

    Google Scholar 

  52. B. DEVEAUD, J. SHAH, T. C. DAMEN and W. T. TSANG, Appl. Phys. Lett. 52 (1988) 1886.

    Google Scholar 

  53. S. MORIN, B. DEVEAUD, F. CLEROT, K. FUJIWARA and K. MITSUNAGA, IEEE J. Quantum Electron. 27 (1991) 1669.

    Google Scholar 

  54. R. KERSTING, R. SCHWEDLER, K. WOLTER, K. LEO and H. KURZ, Phys. Rev. B 46 (1992) 1639.

    Google Scholar 

  55. P. W. M. BLOM, J. E. M. HAVERKORT, P. J. VAN HALL and J. H. WOLTER, Appl. Phys. Lett. 62 (1993) 1490.

    Google Scholar 

  56. H.-J. POLLAND, K. LEO, K. ROTHER, K. PLOOG, J. FELDMAN, G. PETER and E. O. GÖBEL, Phys. Rev. B 38 (1988) 7635.

    Google Scholar 

  57. S. WEISS, J. M. WIESENFELD, D. S. CHEMLA, G. RAYBON, G. SUCHA, M. WEGENER, G. EISENSTEIN, C. A. BURRUS, A. G. DENTAI, U. KOREN, B. I. MLLER, H. TEMKIN, R. A. LOGAN and T. TANBUN-EK, Appl. Phys. Lett. 60 (1992) 9.

    Google Scholar 

  58. T. C. WU, S. C. KAN, D. VASSILOVSKI and K. Y. LAU, Appl. Phys. Lett. 63 (1993) 441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagarajan, R. Carrier transport effects in quantum well lasers: an overview. Opt Quant Electron 26, S647–S666 (1994). https://doi.org/10.1007/BF00326653

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326653

Keywords

Navigation