Skip to main content
Log in

Nucleotide excision repair in yeast

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Armstrong JD, Kunz BA (1990) Proc Natl Acad Sci USA 87: 9005–9009

    Google Scholar 

  • Bailly V, Sung P, Prakash L, Prakash S (1991) Proc Natl Acad Sci USA 88: 9712–9716

    Google Scholar 

  • Bang DD, Verhage R, Goosen N, Brouwer J, van de Putte P (1992) Nucleic Acids Res 20: 3925–3931

    Google Scholar 

  • Bankmann M, Prakash L, Prakash S (1992) Nature 355: 555–558

    Google Scholar 

  • Bardwell L, Bardwell AJ, Friedberg EC (1992) Mol Cell Biol 12: 3041–3049

    Google Scholar 

  • Bardwell AJ, Bardwell L, Johnson DK, Friedberg EC (1993) Mol Microbiol 8: 1177–1188

    Google Scholar 

  • Bohr VA, Smith CA, Okumoto DS, Hanawalt PC (1985) Cell 40: 359–369

    Google Scholar 

  • Buratowski S (1993) Science 260: 37–38

    Google Scholar 

  • Carr AM, Sheldrick KS, Murray JM, al-Harithy R, Watts FZ, Lehmann AR (1993) Nucleic Acids Res 21: 1345–1349

    Google Scholar 

  • Chien C-T, Bartel PI, Sternglanz R, Fields S (1991) Proc Natl Acad Sci USA 88: 9578–9582

    Google Scholar 

  • Christians FC, Hanawalt PC (1993) Biochemistry 32: 10512–10518

    Google Scholar 

  • Cox BS, Parry JM (1968) Mutat Res 6: 37–55

    Google Scholar 

  • Dowd DR, Lloyd RS (1990) J Biol Chem 265: 3424–3431

    Google Scholar 

  • Drapkin R, Reardon JT, Ansari A, Huang J-c, Zawel L, Ahn KJ, Sancar A, Reinberg D (1994) Nature 368: 769–772

    Google Scholar 

  • Duin M van, de Wit J, Odijk H, Westerveld A, Yasui A, Koken MHM, Hoeijmakers JHJ, Bootsma D (1986) Cell 44: 913–923

    Google Scholar 

  • Duin M van, Vredeveldt G, Mayne LV, Odijk H, Vermeulen W, Weeda G, Klein B, Hoeijmakers JHJ, Bootsma D, Westerveld A (1988) Mutat Res 217: 83–92

    Google Scholar 

  • Eckardt-Schupp F, Siede W, Game JC (1987) Genetics 115: 83–90

    Google Scholar 

  • Evans MK, Taffe BG, Harris CC, Bohr VA (1993) Cancer Res 53: 5377–5381

    Google Scholar 

  • Feaver WJ, Svejstrup JQ, Bardwell L, Bardwell AJ, Buratowski S, Gulyas KD, Donahue TF, Friedberg EC, Kornberg RD (1993) Cell 75: 1379–1387

    Google Scholar 

  • Fields S, Song O (1989) Nature 340: 245–246

    Google Scholar 

  • Fishman-Lobell J, Haber JE (1992) Science 258: 480–484

    Google Scholar 

  • Ford JM, Lommel L, Hanawalt PC (1994) Mol Carcinogenesis 10: 105–109

    Google Scholar 

  • Friedberg EC (1990) The genetic and biochemical complexity of DNA repair in eukaryotes: the yeast Saccharomyces cerevisiae as a paradigm. In: Strauss PR, Wilson SH (eds) The eukaryotic nucleus, vol. 1. The Telford Press Inc., Calwell, New Jersey, pp 255–273

    Google Scholar 

  • Friedberg EC, Siede W, Cooper AJ (1991) Cellular responses to DNA damage in yeast. In: Broach JR, Pringle JR, Jones EW (eds) The molecular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics, vol. 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 147–192

    Google Scholar 

  • Game JC (1983) Radiation-sensitive mutants and repair in yeast. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics: fundamental and applied aspects. Springer-Verlag, New York Berlin Heidelberg Tokyo, pp 109–137

    Google Scholar 

  • Gale JM, Smerdon MJ (1988) J Mol Biol 204: 949–958

    Google Scholar 

  • Gale JM, Smerdon MJ (1990) Photochem Photobiol 51: 411–417

    Google Scholar 

  • Gale JM, Nissen KA, Smerdon MJ (1987) Proc Natl Acad Sci USA, 84: 6644–6648

    Google Scholar 

  • Ganesan AK, Hanawalt PC (1985) Mol Gen Genet 201: 387–392

    Google Scholar 

  • Ganesan AK, Seawell PC, Lewis RJ, Hanawalt PC (1986) Biochemistry 25: 5751–5755

    Google Scholar 

  • Gorbalenya AE, Koonin EV, Donchenko AP, Blinov VM (1989) Nucleic Acids Res 17: 4713–4730

    Google Scholar 

  • Grossman L, Thiagalingam S (1993) J Biol Chem 268: 16871–16874

    Google Scholar 

  • Gruskin EA, Lloyd RS (1986) J Biol Chem 261: 9607–9613

    Google Scholar 

  • Gruskin EA, Lloyd RS (1988a) J Biol Chem 263: 12728–12737

    Google Scholar 

  • Gruskin EA, Lloyd RS (1988b) J Biol Chem 263: 12738–12743

    Google Scholar 

  • Gulyas KD, Donahue TF (1992) Cell 69: 1031–1042

    Google Scholar 

  • Guzder SN, Sung P, Prakash L, Prakash S (1993) Proc Natl Acad Sci USA 90: 5433–5437

    Google Scholar 

  • Guzder S, Qiu H, Sommers CH, Sung P, Prakash L, Prakash S (1994) Nature 367: 91–94

    Google Scholar 

  • Habraken Y, Sung P, Prakash L, Prakash S (1993) Nature 366: 365–368

    Google Scholar 

  • Hagen DC, McCaffrey G, Sprague GF (1991) Mol Cell Biol 11: 2952–2961

    Google Scholar 

  • Haynes RH, Kunz BA (1981) DNA repair and mutagenesis in yeast. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: life cycle and inheritance, vol. 1. Cold Spring Harbor Laboratory. Cold Spring Harbor, New York, pp 371–414

    Google Scholar 

  • Hoeijmakers JHJ (1993) Trends Genet 9: 211–217

    Google Scholar 

  • Hoekstra MF, Malone RE (1987) Mutat Res 178: 201–210

    Google Scholar 

  • Hoffen A van, Natarajan AT, Mayne LV, van Zeeland AA, Mullenders LHF (1993) Nucleic Acids Res 21: 5890–5895

    Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) Science 253: 49–53

    Google Scholar 

  • Huang J-C, Svoboda DL, Reardon JT, Sancar A (1992) Proc Natl Acad Sci USA 89: 3664–3668

    Google Scholar 

  • Humbert S, van Vuuren H, Lutz Y, Hoeijmakers JHJ, Egly J-M, Moncollin V (1994) EMBO J 13: 2393–2398

    Google Scholar 

  • Jensen KA, Smerdon MJ (1990) Biochemistry 29: 4773–4782

    Google Scholar 

  • Jones CJ, Wood RD (1993) Biochemistry 32: 12096–12104

    Google Scholar 

  • Jones JS, Prakash L, Prakash S (1990) Nucleic Acids Res 18: 3281–3285

    Google Scholar 

  • Koehler D, Awadallah SS, Glickman B (1991) J Biol Chem 266: 11766–11773

    Google Scholar 

  • Kunala S, Brash D (1992) Proc Natl Acad Sci USA 89: 11031–11035

    Google Scholar 

  • Kunz BA, Pierce MK, Mis JRA, Giroux CN (1987) Mutagenesis 2: 445–453

    Google Scholar 

  • Leadon SA, Lawrence DA (1992) J Biol Chem 267: 23175–23182

    Google Scholar 

  • Lee GS-F, Savage EA, Ritzel RG, von Borstel RC (1988) Mol Gen Genet 214: 396–404

    Google Scholar 

  • Legerski R, Peterson C (1992) Nature 359: 70–73

    Google Scholar 

  • Li L, Bales ES, Peterson CA, Legerski RJ (1993) Nature Genet 5: 413–417

    Google Scholar 

  • Lin JJ, Sancar A (1989) Biochemistry 28: 7979–7984

    Google Scholar 

  • Lin JJ, Sancar A (1992) J Biol Chem 267: 17688–17692

    Google Scholar 

  • Lin JJ, Phillips AM, Hearst JE, Sancar A (1992) J Biol Chem 267: 17693–17700

    Google Scholar 

  • Lloyd RS, Hanawalt PC, Dodson MI (1980) Nucleic Acids Res 8: 5113–5127

    Google Scholar 

  • MacInnes MA, Dickson JA, Hernandez RR, Learmonth D, Lin GY, Mudgett JS, Park MS, Schauer S, Reynolds RJ, Strniste GF, Yu JY (1993) Mol Cell Biol 13: 6393–6402

    Google Scholar 

  • Madhani H, Bohr VA, Hanawalt PC (1986) Cell 45: 417–423

    Google Scholar 

  • Madura K, Prakash S (1986) J Bacteriol 166: 914–923

    Google Scholar 

  • Malone RE, Hoekstra MF (1984) Genetics 107: 33–48

    Google Scholar 

  • Marczynski GT, Jaehning JA (1985) Nucleic Acids Res 13: 8487–8506

    Google Scholar 

  • Masutani C, Sugasawa K, Asahina H, Tanaka K, Hanaoka F (1993) J Biol Chem 268: 9105–9109

    Google Scholar 

  • Masutani C, Sugasawa K, Yanagisawa J, Sonoyama T, Ui M, Enomoto T, Takio K, Tanaka K, van der Spek PJ, Bootsma D, Hoeijmakers JHJ, Hanaoka F (1994) EMBO J 13: 1831–1843

    Google Scholar 

  • Mayne LV, Lehmann AR (1982) Cancer Res. 42: 1473–1478

    Google Scholar 

  • McCaffrey G, Clay FJ, Kelsay K, Sprague GF (1987) Mol Cell Biol 7: 2680–2690

    Google Scholar 

  • McCready SJ, Cox BS (1980) Curr Genet 2: 207–210

    Google Scholar 

  • McCready SJ, Boyce JM, Cox BS (1987) J Cell Science Suppl 6: 25–38

    Google Scholar 

  • Mellon I, Hanawalt PC (1989) Nature 342: 95–98

    Google Scholar 

  • Mellon I, Bohr VA, Smith CA, Hanawalt PC (1986) Proc Natl Acad Sci USA 83: 8878–8882

    Google Scholar 

  • Mellon IM, Spivak GS, Hanawalt PC (1987) Cell 51: 241–249

    Google Scholar 

  • Miller RD, Prakash L, Prakash S (1982a) Mol Cell Biol 2: 939–948

    Google Scholar 

  • Miller RD, Prakash L, Prakash S (1982b) Mol Gen Genet 188: 235–239

    Google Scholar 

  • Mitchell DL, Nairn RS (1989) Photochem Photobiol 49: 805–819

    Google Scholar 

  • Mitchell DL, Nguyen TD; Cleaver JE (1990) J Biol Chem 265: 5353–5356

    Google Scholar 

  • Mitchell DL, Jen J, Cleaver JE (1991) Photochem Photobiol 54: 741–746

    Google Scholar 

  • Miyamoto I, Miura N, Niwa H, Miyazaki J, Tanaka K (1992) J Biol Chem 267: 12182–12187

    Google Scholar 

  • Montelone BA, Malone RE (1994) Yeast 10: 13–27

    Google Scholar 

  • Montelone BA, Gilbertson LA, Nassar R, Giroux C, Malone RE (1992) Mutat Res 267: 55–66

    Google Scholar 

  • Montelone BA, Hoekstra MF, Malone RE (1988) Genetics 119: 289–301

    Google Scholar 

  • Naegeli H, Bardwell L, Friedberg EC (1992) J Biol Chem 267: 392–398

    Google Scholar 

  • Naegeli H, Bardwell L, Friedberg EC (1993) Biochemistry 32: 613–621

    Google Scholar 

  • Nickell C, Anderson WF, Lloyd RS (1991) J Biol Chem 266: 5634–5642

    Google Scholar 

  • O'Donovan A, Wood RD (1993) Nature 363: 185–188

    Google Scholar 

  • Oller AR, Fijalkowska IJ, Dunn RL, Schaaper RM (1992) Proc Natl Acad Sci USA 89: 11036–11040

    Google Scholar 

  • Park E, Guzder SN, Koken MHM, Jaspers-Dekker I, Weeda G, Hoeijmakers JHJ, Prakash S, Prakash L (1992) Proc Natl Acad Sci USA 89: 11416–11420

    Google Scholar 

  • Pearlman DA, Holbrook SR, Pirkle DH, Kim S-H (1985) Science 227: 1304–1308

    Google Scholar 

  • Pehrson JR (1989) Proc Natl Acad Sci USA 86: 9149–9153

    Google Scholar 

  • Perozzi G, Prakash S (1986) Mol Cell Biol 6: 1497–1507

    Google Scholar 

  • Prakash L, Prakash S (1977) Genetics 86: 33–55

    Google Scholar 

  • Prakash S, Sung P, Prakash L (1990) Structure and function of RAD3, RAD6 and other DNA repair genes of Saccharomyces cerevisiae. In: Strauss PR, Wilson SH (eds) The eukaryotic nucleus, vol. 1. The Telford Press Inc., Caldwell, New Jersey, pp 275–292

    Google Scholar 

  • Prakash S, Sung P, Prakash L (1993) Annu Rev Genet 27: 33–70

    Google Scholar 

  • Reynolds RJ, Friedberg EC (1981) J Bacteriol 146: 692–704

    Google Scholar 

  • Robinson GW, Nicolet CM, Kalainov D, Friedberg EC (1986) Proc Natl Acad Sci USA 83: 1842–1846

    Google Scholar 

  • Rosenstein BS, Mitchell DL (1987) Photochem Photobiol 45: 775–780

    Google Scholar 

  • Roza L, Vermeulen W, Bergen Henegouwen JB, Eker AP, Jaspers NG, Lohman PH, Hoeijmakers JH (1990) Cancer Res 50: 1905–1910

    Google Scholar 

  • Sage E (1993) Photochem Photobiol 57: 163–174

    Google Scholar 

  • Sancar A, Rupp WD (1983) Cell 33: 249–260

    Google Scholar 

  • Sassone-Corsi P, Corden J, Kédinger C, Chambon P (1981) Nucleic Acids Res 9: 3941–3957

    Google Scholar 

  • Schaeffer I, Roy R, Humbert S, Moncollin V, Vermeulen W, Hoeijmakers JHJ, Chambon P, Egly J-M (1993) Science 260: 58–63

    Google Scholar 

  • Schaeffer L, Moncollin V, Roy R, Staub A, Mezzina M, Sarasin A, Weeda G, Hoeijmakers JHJ, Egly J-M (1994) EMBO J 13: 2388–2392

    Google Scholar 

  • Scherly D, Nouspikel T, Corlet J, Ucla C, Bairoch A, Clarkson SG (1993) Nature 363: 182–185

    Google Scholar 

  • Schiestl RH, Prakash S (1988) Mol Cell Biol 8: 3619–3626

    Google Scholar 

  • Schild D, Glassner BJ, Mortimer RK, Carlson M, Laurent BC (1992) Yeast 8: 385–395

    Google Scholar 

  • Seeberg E, Nissen-Meyer J, Strike P (1976) Nature 263: 524–526

    Google Scholar 

  • Selby CP, Saucar A (1991) Proc Natl Acad Sci USA 88: 8232–8236

    Google Scholar 

  • Selby CP, Sancar A (1993a) Science 260: 53–58

    Google Scholar 

  • Selby CP, Sancar A (1993b) J Bacteriol 175: 7509–7514

    Google Scholar 

  • Selby CP, Witken EM, Sancar A (1991) Proc Natl Acad Sci USA 88: 11574–11578

    Google Scholar 

  • Siede W, Robinson GW, Kalainov D, Malley T, Friedberg EC (1989) Mol Microbiol 3: 1697–1707

    Google Scholar 

  • Siede W, Friedberg AS, Friedberg EC (1993) J Bacteriol 175: 6345–6347

    Google Scholar 

  • Smerdon M, Thoma F (1990) Cell 61: 675–684

    Google Scholar 

  • Smerdon MJ, Bedoyan J, Thoma F (1990) Nucleic Acids Res 18: 2045–2051

    Google Scholar 

  • Sung P, Higgins D, Prakash L, Prakash S (1988) EMBO J 7: 3263–3269

    Google Scholar 

  • Sung P, Reynolds P, Prakash L, Prakash S (1993) J Biol Chem 268: 26391–26399

    Google Scholar 

  • Sung P, Watkins JF, Prakash L, Prakash S (1994) J Biol Chem 269: 8303–8308

    Google Scholar 

  • Sweder KS, Hanawalt PC (1992) Proc Natl Acad Sci USA 89: 10696–10700

    Google Scholar 

  • Sweder KS, Hanawalt PC (1993) Science 262: 439

    Google Scholar 

  • Sweder KS, Hanawalt PC (1994) J Biol Chem 269: 1852–1857

    Google Scholar 

  • Taylor JS, Cohrs MP (1987) J Am Chem Soc 109: 2834–2835

    Google Scholar 

  • Taylor JS, Garrett DS, Cohrs MP (1988) Biochemistry 27: 7206–7215

    Google Scholar 

  • Terleth C, van Sluis CA, van de Putte P (1989) Nucleic Acids Res 17: 4433–4439

    Google Scholar 

  • Terleth C, Schenk P, Poot R, Brouwer J, van de Putte P (1990) Mol Cell Biol 10: 4678–4684

    Google Scholar 

  • Terleth C (1991) PhD Thesis State University, Leiden 10: 13–27

    Google Scholar 

  • Tomkinson AE, Bardwell AJ, Bardwell L, Tappe NJ, Friedberg EC (1993) Nature 362: 860–862

    Google Scholar 

  • Troelstra C, Odijk H, de Wit J, Westerveld A, Thompson LH, Bootsma D, Hoeijmakers JHJ (1990) Mol Cell Biol 10: 5806–5813

    Google Scholar 

  • Troelstra C, Landsvater RM, Wiegant J, van der Ploeg M, Viel G, Buys CHCM, Hoeijmakers JHJ (1992a) Genomics 12: 745–749

    Google Scholar 

  • Troelstra C, van Gool A, de Wit J, Vermeulen W, Bootsma D, Hoeijmakers JHJ (1992b) Cell 71: 939–953

    Google Scholar 

  • Trueheart JA, Boeke JD, Fink GR (1987) Mol Cell Biol 7: 2316–2328

    Google Scholar 

  • Van Houten B (1990) Microbiol Rev 54: 18–51

    Google Scholar 

  • Venema J (1991) PhD thesis, State University of Leiden, The Netherlands

  • Venema J, Mullenders LHF, Natarajan AT, van Zeeland AA, Mayne LV (1990) Proc Natl Acad Sci USA 87: 4707–4711

    Google Scholar 

  • Venema J, van Hoffen A, Karcagi V, Natarajan AT, van Zeeland AA, Mullenders LHF (1991) Mol Cell Biol 11: 4128–4134

    Google Scholar 

  • Vrieling H, Van Rooijen ML, Groen NA, Zdzienicka MZ, Simons JW, Lohman PH, van Zeeland AA (1989) Mol Cell Biol 9: 1277–1283

    Google Scholar 

  • Vuuren AJ van, Vermeulen W, Ma L, Weeda G, Appeldorn E, Jaspers NGJ, van der Eb AJ, Bootsma D, Hoeijmakers JHJ, Humbert S, Schaeffer L, Egly J-M (1994) EMBO J 13: 1645–1653

    Google Scholar 

  • Wang SY (1976) Photochemistry and photobiology of nucleic acids: biology, vol. 2. Academic Press, New York Wang Z, Svejstrup JQ, Feaver WJ, Wu X, Kornberg RD, Friedberg EC (1994) Nature 368: 74–76

    Google Scholar 

  • Watkins JF, Sung P, Prakash L, Prakash S (1993) Mol Cell Biol 13: 7757–7765

    Google Scholar 

  • Weeda G, van Ham RCA, Masurel R, Westerveld A, Odijk H, de Wit J, Bootsma D, van der Eb AJ, Hoeijmakers JHJ (1990a) Mol Cell Biol 10: 2570–2581

    Google Scholar 

  • Weeda G, van Ham RCA, Vermeulen W, Bootsma D, van der Eb AJ, Hoeijmakers JHJ (1990b) Cell 62: 777–791

    Google Scholar 

  • Weinert TA (1992) Radat Res 132: 141–143

    Google Scholar 

  • Wilcox DR, Prakash L (1981) J Bacteriol 148: 618–623

    Google Scholar 

  • Winston F, Carlson M (1992) Trends Genet 8: 387–391

    Google Scholar 

  • Yoon H, Donahue TF (1992) Mol Microbiol 6: 1413–1419

    Google Scholar 

  • Zelle B, Lohman PH (1979) Mutat Res 62: 363–368

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. A. Grivell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sweder, K.S. Nucleotide excision repair in yeast. Curr Genet 27, 1–16 (1994). https://doi.org/10.1007/BF00326572

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326572

Keywords

Navigation