Skip to main content
Log in

Mitochondrial DNA loss by yeast reentry-mutant cells conditionally unable to proliferate from stationary phase

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Double-mutant cells of the budding yeast Saccharomyces cerevisiae harboring the gcs1-1 and sed1-1 mutations are conditionally defective (cold-sensitive) only for reentry into the mitotic cycle from stationary phase. If already proliferating at the permissive temperature (29°C), these reentry-mutant cells continue to proliferate when transferred to the restrictive temperature of 14°C, but under these conditions reentry-mutant cells lose mitochondrial DNA (mtDNA). In addition, upon exhaustion of the nutrient supply at 14°C, these reentry-mutant cells entered stationary phase at a decreased cell concentration and did not accumulate the reserve carbohydrates trehalose and glycogen. Both of these deficiencies were due to the loss of mtDNA, as shown by the responses of wild-type cells also lacking mtDNA. Mitochondrial status did not affect other aspects of the reentry-mutant phenotype. Although mitochondrial activity and the accumulation of carbohydrate reserves are typical features of cells in stationary phase, the reentry-mutant phenotype reveals that neither entry into nor exit from stationary phase need involve mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barclay BJ, Little JG (1978) Mol Gen Genet 160:3–40

    Google Scholar 

  • Broach JR, Deschenes RJ (1990) Adv Cancer Res 54:79–139

    Google Scholar 

  • Cannon JF, Tatchell K (1987) Mol Cell Biol 7:2653–2663

    Google Scholar 

  • Coruzzi G, Trembath MK, Tzagoloff A (1978) Eur J Biochem 92:279–287

    Google Scholar 

  • Deutch CE, Parry JM (1974) J Gen Microbiol 80:259–266

    Google Scholar 

  • Drebot MA, Johnston GC, Singer RA (1987) Proc Natl Acad Sci USA 84:7948–7952

    Google Scholar 

  • Drebot MA, Barnes CA, Singer RA, Johnston GC (1990) J Bacteriol 172:3584–3589

    Google Scholar 

  • Dutcher SK (1982) Genetics 102:9–17

    Google Scholar 

  • Fearon K, Mason TL (1988) Mol Cell Biol 8:3636–3646

    Google Scholar 

  • Foury F (1982) J Biol Chem 257:781–787

    Google Scholar 

  • Foury F (1989) J Biol Chem 264:20552–20560

    Google Scholar 

  • Foury F, Lahaye A (1987) EMBO J 6:1441–1449

    Google Scholar 

  • Foury F, Tzagoloff A (1976) Eur J Biochem 68:113–119

    Google Scholar 

  • Gasser SM, Ohashi A, Daum G, Bohni PC, Gibson J, Reid GA, Yonetani T, Schatz G (1982) Proc Natl Acad Sci USA 79:267–271

    Google Scholar 

  • Genga A, Bianchi L, Foury F (1986) J Biol Chem 261:9328–9332

    Google Scholar 

  • Graff G, Sacks RW, Lands WEM (1983) Arch Biochem Biophys 224:342–350

    Google Scholar 

  • Greenleaf AL, Kelly JL, Lehman IR (1986) Proc Natl Acad Sci USA 83:3391–3394

    Google Scholar 

  • Haffter P, McMullin TW, Fox TD (1990) Genetics 125:495–503

    Google Scholar 

  • Hartwell LH (1974) Bacteriol Rev 38:164–198

    Google Scholar 

  • Johnston GC, Singer RA (1978) Cell 14:951–958

    Google Scholar 

  • Johnston GC, Pringle JR, Hartwell LH (1977) Exp Cell Res 105:79–98

    Google Scholar 

  • Johnston SA, Hopper JE (1982) Proc Natl Acad Sci USA 79:6971–6975

    Google Scholar 

  • Koerner TJ, Myers AM, Lee S, Tzagoloff A (1987) J Biol Chem 262:3690–3696

    Google Scholar 

  • Lillie SH, Pringle JR (1980) J Bacteriol 143:1384–1394

    Google Scholar 

  • Liskowsky T, Michaelis G (1988) Mol Gen Genet 214:218–223

    Google Scholar 

  • marzuki S, Hall RM, Linnane AW (1974) Biochem Biophys Res Commun 57:372–378

    Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1983) Exp Cell Res 146:151–162

    Google Scholar 

  • McConnell SJ, Stewart LC, Talin A, Yaffe, MP (1990) J Cell Biol 111:967–976

    Google Scholar 

  • Myers AM, Pape LK, Tzagoloff A (1985) EMBO J 4:2087–2092

    Google Scholar 

  • Myers AM, Crivellone MD, Tzagoloff A (1987) J Biol Chem 262:3388–3397

    Google Scholar 

  • Natsoulis G, Hilger F, Fink GR (1986) Cell 45:235–243

    Google Scholar 

  • Nawlon CS, Ludescher RD, Walter SK (1979) Mol Gen Genet 169:189–194

    Google Scholar 

  • Panek AD, Mattoon JR (1977) Arch Biochem Biophys 183:306–316

    Google Scholar 

  • Paul M-F, Velours J, Arselin de Chateaubodeau G, Aigle M, Guerin B (1989) Eur J Biochem 185:165–171

    Google Scholar 

  • Pon L, Schatz G (1991) Biogenesis of yeast mitochondria, vol. 1 In: Broach JR, Pringle JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces: Genome dynamics, protein synthesis and energetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 333–406

    Google Scholar 

  • Sclafani RA, Fangman WL (1984) Proc Natl Acad Sci USA 81:5821–5825

    Google Scholar 

  • Slonimski PP, Perrodin G, Croft JH (1968) Biochem Biophys Res Commun 30:232–239

    Google Scholar 

  • Stevens B (1981) Mitochondrial Structure. In: Strathern JN, Jones EW, Broach JR (eds) The Molecular Biology of the Yeast Saccharomyces cerevisiae: Life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 471–504

    Google Scholar 

  • Subik J, Takacsova G, Kovac L (1978) Mol Gen Genet 166:103–116

    Google Scholar 

  • Tzagoloff A, Dieckmann CL (1990) Microbiol Rev 54:211–225

    Google Scholar 

  • Walton FE, Carter BLA, Pringle JR (1979) Mol Gen Genet 171:111–114

    Google Scholar 

  • Williamson DH, Fennell DJ (1975) Methods Cell Biol 12:335–351

    Google Scholar 

  • Williamson DH, Maroudas NG, Wilkie D (1971) Mol Gen Genet 111:209–233

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. S. Cox

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filipak, M., Drebot, M.A., Ireland, L.S. et al. Mitochondrial DNA loss by yeast reentry-mutant cells conditionally unable to proliferate from stationary phase. Curr Genet 22, 471–477 (1992). https://doi.org/10.1007/BF00326412

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326412

Key words

Navigation