Skip to main content
Log in

Vacuum ultraviolet 178.7 nm emission in sodium vapour under two-photon resonance excitation

  • Laser Technology and Non-Linear Optics
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We have observed a fixed wavelength emission at 178.7 nm in sodium vapour under 578.7 nm two-photon resonance excitation. The proposed non-linear wave mixing scheme is described by ω178.7 nm = 2ωL + ω465.7 nm; where ω178.7 is the 178.7 nm photon frequency, ωL is the laser-photon frequency, and ω465.7 is the 465.7 nm photon frequency. This 465.7 nm emission comes from another six-wave mixing process involving two hyper-electronic Raman scattering photons. The excitation spectrum of the 178.7 nm emission has a typical multiwave mixing pattern with a competing effect appearing at higher temperatures under two-photon resonance excitation. Numerical analysis indicates that this vacuum ultraviolet emission has a poor phase-match condition that will depress the emission intensity to a certain extent. This makes the observation more difficult compared with other reported four-wave mixing generated emissions. Fortunately, on the one hand, it is enhanced by quasi-auto-ionization resonance when the 3s–5s transition is coupled to the sodium continuum by a 330.2 nm photon. On the other hand, its wavelength sits so close to the sodium Cooper minimum that weak absorption will not suppress this vacuum ultraviolet emission further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. CHEN, C. Y. R. WU, C. C. KIM and D. L. JUDGE, App. Phys. B 33 (1984) 155.

    Google Scholar 

  2. W. HARTIG, Appl. Phys. 15 (1978) 427.

    Google Scholar 

  3. D. COTTER, D. C. HANNA, W. H. W. TUTTLEBEE and M. A. YURATICH, Opt. Commun. 22 (1977) 190.

    Google Scholar 

  4. Z. J. JABBOUR, M. S. MALCUIT and J. HUENNEKENS, Appl. Phys. B 52 (1991) 281.

    Google Scholar 

  5. R. B. MILES and S. E. HARRIS, IEEE J. Quantum Electron. QE-9 (1973) 470.

    Google Scholar 

  6. M. A. MOORE, W. R. GARRETT and M. G. PAYNE, Phys. Rev. A 39 (1989) 3692.

    Google Scholar 

  7. J. R. TAYLOR, Opt. Commun. 18 (1976) 504.

    Google Scholar 

  8. Z. G. WANG, H. SCHMIDT and B. WELLEGEHAUSEN, Appl. Phys. B 44 (1987) 222.

    Google Scholar 

  9. P. L. ZHANG and A. L. SCHAWLOW, Can. J. Phys. 62 (1990) 1187.

    Google Scholar 

  10. N. B. DELONE and V. P. KRAINOV, Fundamentals of Nonlinear Optics of Atomic Gases (Wiley, New York, 1987) pp. 141–6.

    Google Scholar 

  11. S. S. DIMOV, L. I. PAVLOV, K. V. STAMENOV, Y. I. HELLER and A. K. POPOV, Appl. Phys. B 30 (1983) 35.

    Google Scholar 

  12. S. G. DINEV, I. G. KOPRINKOV and I. L. STEFANOV, Appl. Phys. B 39 (1986) 65.

    Google Scholar 

  13. K. N. DRABOVICH, D. I. METCHKOV, V. M. MITEV, L. I. PAVLOV and K. V. STAMENOV, Opt. Commun. 20 (1977) 350.

    Google Scholar 

  14. X. F. LI, A. L'HUILLIER, M. FERRAY, L. A. LOMPRE and G. MAINFRAY, Phys. Rev. A 39 (1989) 5751.

    Google Scholar 

  15. K. Miyazaki and H. Sakai, J. Phys. B 25 (1992) L83.

  16. C. Y. SHE and J. REINTJES, Appl. Phys. Lett. 31 (1977) 95.

    Google Scholar 

  17. R. ROSMAN, G. GIBSON, K. BOYER et al., J. Opt. Soc. Am. B 5 (1988) 1237.

    Google Scholar 

  18. S. C. WALLACE and G. ZDASIUK, Appl. Phys. Lett. 28 (1976) 449.

    Google Scholar 

  19. V. M. MITEV, L. I. PAVLOV and K. V. STAMENOV, J. Phys. B 11 (1978) 819.

    Google Scholar 

  20. R. MAHON and F. S. TOMKINS, IEEE J. Quantum Electron. QE-18 (1982) 913.

    Google Scholar 

  21. A. V. SMITH, W. J. ALFORD and G. R. HADLEY, J. Opt. Soc. Am. B 5 (1988) 1503.

    Google Scholar 

  22. R. T. HODGSON, P. P. SOROKIN and J. J. WYNNE, Phys. Rev. Lett. 32 (1974) 343.

    Google Scholar 

  23. B. J. PONG and T. S. YIH, Proc. Natl. Sci. Council, ROC, A 18 (1994) 168.

    Google Scholar 

  24. A. N. NESMEYANOV, Vapor Pressure of Elements (Academic Press, New York, 1963) p. 443.

    Google Scholar 

  25. D. C. HANNA, M. A. YURATICH and D. COTTER, Nonlinear Optics of Free Atoms and Molecules (Springer-Verlag, New York, 1979) p. 87.

    Google Scholar 

  26. J. F. REINTJES, Nonlinear Optical Parametric Processes in Liquids and Gases (Academic Press, Orlando, FL, 1984) p. 45.

    Google Scholar 

  27. C. R. VIDAL, in Tunable Lasers, edited by L. F. MOLLENAUER and J. C. WHITE (Springer-Verlag, New York, 1987) pp. 61–3.

    Google Scholar 

  28. H. S. FUNG, T. E. NEE, P. J. TSAI, W. T. CHENG, H. H. WU and T. S. YIH, Chinese J. Phys. 31 (1993) 265.

    Google Scholar 

  29. W. L. Wiese and G. A. Martin, Wavelengths and Transition Probabilities for Atoms and Atomic Ions, Part II, National Standard Reference Data System (NSRDS), (National Bureau of Standards, 1980).

  30. W. T. Cheng, MSc thesis, National Central University, Chung-Li, Taiwan (1993).

  31. M. H. LU and Y. M. LIU, J. Phys. B 27 (1994) 5089.

    Google Scholar 

  32. Y. R. SHEN, The Principles of Nonlinear Optics (Wiley, New York, 1984) pp. 152–9.

    Google Scholar 

  33. M. G. GROEVA, D. I. METCHKOV, V. M. MITEV, L. I. PAVLOV and K. V. STAMENOV, Phys. Lett. 64 (1977) 41.

    Google Scholar 

  34. M. A. MOORE, W. R. GARRETT and M. G. PAYNE, Opt. Commun. 68 (1988) 310.

    Google Scholar 

  35. W. R. GARRETT, M. A. MOORE, R. C. HART and M. G. PAYNE, Phys. Rev. 45 (1992) 6687.

    Google Scholar 

  36. R. D. HUDSON, Phys. Rev. 43 (1965) 1790.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yih, T.S., Pong, B.J., Cheng, W.T. et al. Vacuum ultraviolet 178.7 nm emission in sodium vapour under two-photon resonance excitation. Opt Quant Electron 28, 1463–1476 (1996). https://doi.org/10.1007/BF00326218

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326218

Keywords

Navigation