Skip to main content
Log in

The suv3 nuclear gene product is required for the in vivo processing of the yeast mitochondrial 21s rRNA transcripts containing the r1 intron

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We have constructed a yeast mitochondrial genome containing only one group-I intron, r1, from the 21s rRNA gene and introduced this genome into a strain bearring a disruption of the suv3 gene. The presence of the r1 intron alone causes a block in respiration, while the isogenic strain containing the intronless genome is respiratory competent. Northern analysis indicates that the functional suv3 protein is necessary for the yeast cell in order to process the r1-containing transcripts: in the absence of the suv3 protein the hybridization pattern of the excised r1 intron is altered and the amount of mature 21s rRNA is 50-fold lower. We suggest that the multifunctional suv3 protein, which displays motifs of ATP-dependent RNA helicases, is necessary for the in vivo pathway leading to formation of mature 21s rRNA from the transcripts containing the r1 intron in mitochondria of Saccharomyces cerevisiae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnberg AC, Van der Horst G, Tabak H (1986) Cell 44:235–242

    Google Scholar 

  • Bolotin-Fukuhara M, Grivell LA (1992) Ant van Leeuwenhoek 62:131–153

    Google Scholar 

  • Bos H (1980) PhD thesis, University of Amsterdam

  • Burke JM (1988) Gene 73:273–294

    Google Scholar 

  • Butow RA, Zhu H, Perlman P, Conrad-Webb H (1989) Genome 31:757–760

    Google Scholar 

  • Cech TR (1990) Annu Rev Biochem 59:543–568

    Google Scholar 

  • Conrad-Webb H, Perlman PS, Zhu H, Butow RA, (1990) Nucleic Acids Res 18:1369–1376

    Google Scholar 

  • Dujon B (1980) Cell 20:185–197

    Google Scholar 

  • Garriga G, Bertrand H, Lambowitz AM (1984) Cell 36:623–634

    Google Scholar 

  • Guthrie C (1991) Science 253:157–163

    Google Scholar 

  • Jacquier A, Dujon B (1983) Mol Gen Genet 192:487–499

    Google Scholar 

  • Jacquier A, Dujon B (1985) Cell 41:383–394

    Google Scholar 

  • Lambowitz AM, Perlman PS (1990) Trends Biochem Sci 15:440–444

    Google Scholar 

  • Levens D, Ticho B, Ackerman E, Rabinowitz M (1981) J Biol Chem 256:5226–5232

    Google Scholar 

  • Locker J, Rabinowitz M (1981) Plasmid 6:302–314

    Google Scholar 

  • Macreadie IG, Scott RM, Zinn AR, Butow RA (1985) Cell 41:395–402

    Google Scholar 

  • Merten S, Synenki RM, Locker J, Christianson T, Rabinowitz M (1980) Proc Natl Acad Sci USA 77:1417–1421

    Google Scholar 

  • Morimoto R, Locker J, Synenki RM, Rabinowitz M (1979) J Biol Chem 254:12461–12470

    Google Scholar 

  • Musters W, Venema J, Van der Linden G, Van Heerikhuizen H, Klootwijk J, Planta RJ (1989) Mol Cell Biol 9:551–559

    Google Scholar 

  • Rose MD, Winston F, Hieter P (1990) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Ruby SW, Abelson J (1991) Trends Genet 7:79–85

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Seraphin B, Boulet A, Simon M, Faye G (1987) Proc Natl Acad Sci USA 84:6810–6814

    Google Scholar 

  • Stepien PP, Butow RA (1989) Nucleic Acids Res 18:380

    Google Scholar 

  • Stepien PP, Margossian SP, Landsman D, Butow RA (1992) Proc Natl Acad Sci USA 89:6813–6817

    Google Scholar 

  • Tabak HF, Van der Horst G, Osinga KA, Arnberg AC (1984) Cell 39:623–629

    Google Scholar 

  • Van der Horst G, Tabak HF (1985) Cell 40:759–766

    Google Scholar 

  • Zhu H, Macreadie IG Butow RA (1987) Mol Cell Biol 7:2530–2537

    Google Scholar 

  • Zhu H, Conrad-Webb C, Liao XH, Perlman PS, Butow RA (1989) Mol Cell Biol 9:1507–1512

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Wolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepien, P.P., Kokot, L., Leski, T. et al. The suv3 nuclear gene product is required for the in vivo processing of the yeast mitochondrial 21s rRNA transcripts containing the r1 intron. Curr Genet 27, 234–238 (1995). https://doi.org/10.1007/BF00326154

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326154

Key words

Navigation