Skip to main content
Log in

Cellulose TETPA: a chelating collector designed for multielement preconcentration in flow systems

  • Original Papers
  • Trace Analysis
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Summary

A cellulose collector with immobilized triethylenetetraminepentaacetic acid (TETPA) groups has been developed for multielement preconcentration (e.g., Al, Be, Bi, Cd, Co, Cu, Fe(III), In, Mn, Ni, Pb, Tl(III), U(VI), V(IV), Zn) using a low-pressure flow system. Analyte distribution coefficients Kd of the order of 104–105 ml/g (0.5 mol/l NaCl, pH 3–8) and fast exchange kinetics enable effective trace/matrix separations by means of small TETPA-filled (75 mg) columns even at high flow rates (contact time<1 s). Accordingly, recovery rates ranging from 88 (Tl(III)) to 99.5% (Ni), relative standard deviations sr mostly between 1.5 and 4.0% (off-line determined by flame AAS) and blank levels (e.g., Cu, Fe, Zn) in the lower ng range (quantified by ETAAS) can be achieved. Metal-complexing dissolved organic substances (e.g. humic substances), however, considerably lower the recovery rates of some analytes (e.g., Cu, Fe, Ni). A series of water analyses (e.g., river, sea, bog water) prove the reliability of the developed flow-preconcentration system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mizuike A (1983) Enrichment techniques for inorganic trace analysis. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Zolotov YA, Kuz'min NM (1990) Preconcentration of trace elements, vol XXV. In: Wilson and Wilson's Comprehensive Analytical Chemistry. Elsevier, Amsterdam Oxford New York Tokyo

    Google Scholar 

  3. Carbonell V, Salvador A, de la Guardia M (1992) Fresenius J Anal Chem 342:529–537

    Google Scholar 

  4. Zolotov YA, Spivakov B Y, Maryutina TA, Bashlov VL, Pavlenko IV (1989) Fresenius Z Anal Chem 335:938–944

    Google Scholar 

  5. Welz B, Xo S, Sperling M (1991) Applied Spectroscopy 45:1433–1443

    Google Scholar 

  6. Fang Z, Sperling M, Welz B (1991) J Anal At Spectrom 6:301–306

    Google Scholar 

  7. Sperling M, Yin X, Welz B (1991) Spectrochim Acta 46B:1789–1801

    Google Scholar 

  8. Fang Z, Guo T, Welz B (1991) Talanta 38:613–619

    Google Scholar 

  9. Caroli S, Alimonti A, Petrucci F, Horvath Zs (1991) Anal Chim Acta 248:241–249

    Google Scholar 

  10. Porta V, Sarzanini C, Abollino O, Mentasti E, Cartini E (1992) J Anal At Spectrom 7:19–22

    Google Scholar 

  11. Dionex Corporation (1991) Ion chromatography/inductively coupled argon plasma: a new technique for trace metal determination, Technical Note 28

  12. Blödorn W (1991) Determination of trace metals in brines (NaCl) by the coupling SPECTROFLAME-ICP/TraceCon. Spectro analytical instruments, application note 1. Kleve

  13. Knapp G et al (1987) J Anal At Spectrom 2:611–614

    Google Scholar 

  14. Knapp G et al (1989) Mikrochim Acta 1989:257–265

    Google Scholar 

  15. Burba P, Blödorn W (1992) Vom Wasser 79:9–27

    Google Scholar 

  16. Wegscheider W, Knapp G (1981) Preparation of chemically modified cellulose exchangers and their use for preconcentration of trace elements. CRC Crit Rev Anal Chem 11:79–102

    Google Scholar 

  17. Guthrie JD, Bullock AL (1960) Ind Eng Chem 52:935–940

    Google Scholar 

  18. Smits J, van Grieken R (1978) Angew Makromol Chem 72:105–113

    Google Scholar 

  19. Tschöpel P, Kotz L, Schulz W, Veber M, Tölg G (1980) Fresenius Z Anal Chem 302:1–14

    Google Scholar 

  20. Berndt H, Jackwerth E (1976) At Abs Newslett 15:109–113

    Google Scholar 

  21. Burba P, Willmer P-G, Becker M, Klockenkämper R (1989) Spectrochim Acta 44B:525–532

    Google Scholar 

  22. Burba P, Willmer P-G (1982) Fresenius Z Anal Chem 311:222–231

    Google Scholar 

  23. Fischer H-J, Lieser KH (1989) Fresenius Z Anal Chem 335:738–742

    Google Scholar 

  24. Buffle J (1988) Complexation reactions in aquatic systems: an analytical approach. Horwood, Chichester

    Google Scholar 

  25. Burba P, Willmer P-G (1992) Fresenius J Anal Chem 342:167–171

    Google Scholar 

  26. Bernhardt H et al (1984) NTA — Studie über die aquatische Umweltverträglichkeit von Nitrilotriacetat (NTA). Richarz, St. Augustin/Köln

    Google Scholar 

  27. Hoppstock K (1992) Ein Beitrag zur Verbesserung des Nachweisvermögens atomspektrometrischer Methoden in der Werkstoff-analytik, Fortschritt-Berichte VDI, Reihe 5, Nr. 271. VDI, Düsseldorf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. V. Krivan on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burba, P., Rocha, J.C. & Schulte, A. Cellulose TETPA: a chelating collector designed for multielement preconcentration in flow systems. Fresenius J Anal Chem 346, 414–419 (1993). https://doi.org/10.1007/BF00325853

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00325853

Keywords

Navigation