Skip to main content
Log in

Vision-based system for automatic stabilization of mode, beam steer, and output power of a high-power laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

As advancements in laser technology result in higher-power devices, increased thermal loads experienced by resonator optical components generate instabilities in the output beam. Consequently, methods for maintaining and optimizing output-beam parameters are necessary for efficient long-term operation. This study examines a vision-based feedback control system which monitors a sampled cross-sectional image of the laser's output, and regulates both cavity mirrors, as well as the excitation level, to stabilize beam uniformity, beam steer, and output-power level.

The system optimizes the output-power distribution achievable from a given laser, while significantly reducing beam steering effects. Direction of beam propagation is restricted to within 60 μrad of the desired setpoint, while the output power is stabilized to within 4%. Results clearly document a considerable improvement in laser performance through maximization of beam uniformity, minimization of beam steering, and stabilization of total output power. As such, an important degree of consistency and repeatability in output-beam parameters, essential to precision laser applications, is easily achieved. Valuable diagnostic capabilities pertaining to output beam intensity and energy profiles are also incorporated into the control system. These data may be monitored on-line or stored for subsequent analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Arata: Proc. Int'l Conf. on Laser Advanced Materials Processing — Science and Applications, Osaka, Japan (1987)

    Google Scholar 

  2. Photon, Inc.: The Importance of Measuring the Spatial Characteristics of Optical Beams (Photon, Los Gatos, CA 1988)

    Google Scholar 

  3. C.V. Sellathamby, H.J.J. Seguin, S.K. Nikumb: Opt. Commun. 78, 47–50 (1990)

    Google Scholar 

  4. C.V. Sellathamby, H.J.J. Seguin, S.K. Nikumb: Appl. Opt. 29, 4499–4503 (1990)

    Google Scholar 

  5. A.J.B. Travis: Proc. 5th Int'l Symp. on Gas Flow and Chemical Lasers (1984) pp. 367–372

  6. W.P. Latham, J.D. German: Laser Diagnostics, SPIE Proc. 343, 64–70 (1982)

    Google Scholar 

  7. T.J. Ramos, D.R. Lim, A.C. Lingenfelter: Proc. Medicine and Biology Symposium — ICALED '85, 152–157 (1985)

  8. G.C. Lim, W.M. Steen: Proc. 1st Int'l Conf. on Lasers in Manufact., Brighton, U. K. (1983)

  9. G. Sepold, P.O. Juptner, J. Telepski: High Power Lasers and Their Industrial Applications, SPIE Proc. 650, 167–169 (1986)

    Google Scholar 

  10. E. Beyer, G. Herrziger, R. Kramer, P. Loosen: High Power Lasers and Their Industrial Applications, SPIE Proc. 650, 170–177 (1986)

    Google Scholar 

  11. F.H. White, G.A. Needham: Laser Diagnostics, SPIE Proc. 343, 2–15 (1982)

    Google Scholar 

  12. J.T. Knudtson, K.L. Ratzlaff: Rev. Sci. Instrum. 54, 856–860 (1983)

    Google Scholar 

  13. V.M. Weerasinghe, W.M. Steen: Proc. Int'l Conf. on Applications of Lasers and Electro-optics — ICALED '85, 107–112 (1985)

  14. W.M. Steen, V.M. Weerasinghe: High Power Lasers and Their Industrial Applications, SPIE Proc. 650, 160–165 (1986)

    Google Scholar 

  15. D.R. Akitt, H.J. Seguin, C.V. Sellathamby, H. Reshef: Rev. Sci. Instrum. 63, 1859–1866 (1992)

    Google Scholar 

  16. D.R. Akitt, H.J. Seguin, M.R. Cervenan, S.K. Nikumb: IEEE J. QE-26, 1413–1417 (1990)

    Google Scholar 

  17. F. Martin, J.G. Willman: Laser Focus/Electro. Opt. (USA) 21, 104–111 (1985)

    Google Scholar 

  18. G.P. Anderson: Using a Micro-computer to Measure the Intensity Distribution in a Laser Beam (Central Electricity Generating Board, New York 1987)

    Google Scholar 

  19. R.A. Heyler, S.C. Guggenheimer: Ion-Laser Technol. 8, 107–116 (1989)

    Google Scholar 

  20. V. Fantini, G. Incerti: High Power Lasers and Their Applications, SPIE Proc. 650, 36–38 (1986)

    Google Scholar 

  21. A.E. Siegman: Lasers (University of Science Books, Mill Valley, CA 1986) pp. 558–891

    Google Scholar 

  22. W.F. Krupke, W.R. Sooy: IEEE J. QE-5, 423–431 (1969)

    Google Scholar 

  23. K.H. Nam, H.J.J. Seguin, J. Tulip: IEEE J. QE-15, 44–50 (1979)

    Google Scholar 

  24. H.J.J. Seguin, K.H. Nam, J. Tulip: IEEE J. QE-15, 50–54 (1979)

    Google Scholar 

  25. A.K. Nath, H.J.J. Seguin, V.A. Seguin: IEEE J. QE-22, 268–727 (1986)

    Google Scholar 

  26. V.E. Merchant, M.R. Cervenan, H.J.J. Seguin: Proc. Int'l Conf. on Lasers '85, 642–646 (1985)

  27. Productivity Tools for Optimizing Optical System Performance (Photon, Los Gatos, CA 1989)

  28. C.V. Sellathamby, H.J.J. Seguin, D.R. Akitt, H. Reshef: Rev. Sci. Instrum.(to be published, 1993)

  29. N.C. Kerr, S.E. Clark, D.C. Emmony: Rev. Sci. Instrum. 22, 1034–1036 (1989)

    Google Scholar 

  30. Thermal Image Plate for CO2 and Other Molecular Lasers (Optical Engineering, Inc., Santa Rosa, CA 1986)

  31. S. Bangs: Welding Design and Fabrication, 45–48 (1984)

  32. R.W. Richardson: Industrial Optical Sensing, SPIE Proc. 961, 95–113 (1988)

    Google Scholar 

  33. I. Ferrier: Robotics World 6, 22–24 (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sellathamby, C.V., Seguin, H.J.J. & Akitt, D.R. Vision-based system for automatic stabilization of mode, beam steer, and output power of a high-power laser. Appl. Phys. B 57, 267–276 (1993). https://doi.org/10.1007/BF00325205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00325205

PACS

Navigation