Skip to main content
Log in

Degenerate four-wave mixing in nitrogen dioxide: Application to combustion diagnostics

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Single shot degenerate four wave mixing (DFWM) images of the distribution of nitrogen dioxide (NO2) doped into a propane/air flame at concentrations of the order of 7000 ppm have been obtained. These images indicate the relative concentration of NO2 in different parts of the flame with an estimated spatial resolution of 150 μm.

Initial experiments were performed using NO2 in a glass cell with nitrogen buffer gas. DFWM signals were generated using both the frequency doubled output of a pulsed ND:YAG laser and the tunable blue output of an excimer pumped dye laser. The signal was investigated as a function of laser power, NO2 concentration and buffer gas pressure. In addition, spectra of NO2 in the region 450 to 480 nm were obtained.

Signals were then sought in both a cold air/NO2 gas flow and an ignited mixture of propane and air seeded with NO2, using a DFWM imaging geometry. The resulting images from the flame demonstrate the disappearance of the NO2 molecules in the flame interaction zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Regnier, J.P.E. Taran: Appl. Phys. Lett. 23, 240 (1973)

    Google Scholar 

  2. S.A. Druet, J.P.E. Taran: In Chemical and Biological Applications of Lasers, Vol. 4, ed. by C.B. Moore (Academic, New York 1979)

    Google Scholar 

  3. R.J. Hall, A.C. Eckbreth: Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics, in Laser Applications, Vol. 5, ed. by J.F. Ready, R.K. Erf (Academic, New York 1984)

    Google Scholar 

  4. D.A. Greenhalgh: Quantitative CARS Spectroscopy, in Advances in Nonlinear Spectroscopy, Vol. 15, ed. by R.J.H. Clark, R.E. Hester (Wiley, New York 1988)

    Google Scholar 

  5. P. Andresen, A. Bath, W. Groger, H.W. Lulf, G. Meijer, J.J. ter Meulen: Appl. Opt. 27, 365 (1988)

    Google Scholar 

  6. D.R. Grieser, R.H. Barnes: Appl. Opt. 19, 741 (1980)

    Google Scholar 

  7. M. Alden, H. Edner, G. Holmstedt, S. Svanberg, T. Hogberg: Appl. Opt. 21, 1236 (1982)

    Google Scholar 

  8. R.K. Hanson: 21st Symp. (Int'l.) on Combustion (1986) p. 1677

  9. M.J. Dyer, D.R. Crosley: Opt. Lett. 7, 382 (1982)

    Google Scholar 

  10. G. Kychakoff, K. Knapp, R.D. Howe, R.K. Hanson: AIAA J. 22, 153 (1984)

    Google Scholar 

  11. M.G. Allen, R.D. Howe, R.K. Hanson: Opt. Lett. 11, 126 (1986)

    Google Scholar 

  12. M.P. Lee, P.H. Paul, R.K. Hanson: Opt. Lett. 11, 7 (1986)

    Google Scholar 

  13. J.M. Seitzman, G. Kychakoff, R.K. Hanson: Opt. Lett. 10, 439 (1985)

    Google Scholar 

  14. A. Arnold, H. Becker, R. Suntz, P. Monkhouse, J. Wolfrum, R. Maly, W. Pfister: Opt. Lett. 15, 831 (1990)

    Google Scholar 

  15. P. Andresen, G. Meijer, H. Schluter, H. Voges, A. Koch, W. Hentschel, W. Oppermann, E.W. Rothe: Appl. Opt. 29, 2392 (1990)

    Google Scholar 

  16. Abrams et al.: In: Optical Phase Conjugated, ed. by R.A. Fisher (Academic, New York 1983)

    Google Scholar 

  17. J. Pender, L. Hesselink: Opt. Lett. 10, 264 (1985)

    Google Scholar 

  18. P. Ewart, S.V. O'Leary: Opt. Lett. 11, 279 (1986)

    Google Scholar 

  19. P. Ewart, P. Snowdon, I. Magnusson: Opt. Lett. 14, 563 (1989)

    Google Scholar 

  20. D.J. Rakestraw, R.L. Farrow, T. Dreier: Opt. Lett. 15, 709 (1990)

    Google Scholar 

  21. R.L. Farrow, D.J. Rakestraw, T. Dreier: Detection of NO Using DFWM (unpublished)

  22. D.J. Rakestraw, L.R. Thorne, T. Dreier: Appl. Phys. B50, 479 (1990)

    Google Scholar 

  23. Y. Agrawal, T. Hadleish, F. Robben: Prog. Aeronaut & Astronaut. 53, 279 (1977)

    Google Scholar 

  24. R.J. Cattolica: Combust. Sci. & Techn. 54, 61 (1987)

    Google Scholar 

  25. R.H. Barnes, J.F. Kircher: Appl. Opt. 17, 1099 (1978)

    Google Scholar 

  26. J.J. Reuther, I.H. Billick, A.J. Gaynor: Combust. Flame 71, 331 (1988)

    Google Scholar 

  27. A.E. Douglas, K.E. Huber: Can. J. Phys. 43, 74 (1965)

    Google Scholar 

  28. S. Takezawa, N. Sugimoto, N. Takeuchi: Chem. Phys. Lett. 97, 77 (1983)

    Google Scholar 

  29. N. Sugimoto, N. Takeuchi, H. Iijima, T. Arai, S. Takezawa: Chem. Phys. Lett. 106, 403 (1984)

    Google Scholar 

  30. G. Herzberg: Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand Reinhold, New York 1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was done when previously employed by AEA Technology at Harwell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mann, B.A., O'Leary, S.V., Astill, A.G. et al. Degenerate four-wave mixing in nitrogen dioxide: Application to combustion diagnostics. Appl. Phys. B 54, 271–277 (1992). https://doi.org/10.1007/BF00325192

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00325192

PACS

Navigation