Skip to main content

13C-selective infrared multiple-photon decomposition study of CBrClF2


The infrared multiple-photon single-frequency decomposition (IRMPD) of CBrClF2 was examined as functions of laser wavenumber, laser fluence, and partial pressure of CBrClF2. The initial step was the scission of a C-Br bond. In the presence of O2 the carbon-containing product was CF2O and its subsequent hydrolysis gave CO2. The initial dissociation was highly 13C selective at wavenumbers below 1014 cm−1. CBrClF2 decomposed at relatively low fluences as compared to CHClF2. However, the decomposition yield rapidly decreased with increasing pressure. In the large-scale irradiation experiment using about 8 J pulse at 1 Hz, we obtained a carbon yield of 0.41 μmol per pulse at a 13C-atom fraction of 17% for a mixture of 10 Torr CBrClF2 and 10 Torr O2, and a carbon yield of 0.17 μmol per pulse at a fraction of 29% for a mixture of 20 Torr CBrClF2 and 20 Torr O2. The IRMPD of CHClF2 gave a carbon yield of 0.18 μmol per pulse at 48% for 10 Torr neat CHClF2 and yield of 0.25 μmol at 52% for 20 Torr CHClF2. The large-scale irradiation experiment was also carried out for mixtures of CBr2F2 and O2. CHClF2 is the most productive of 13C.

This is a preview of subscription content, access via your institution.


  1. 1.

    V.S. Letokhov: Nonlinear Laser Chemistry, Springer Ser. Chem. Phys., Vol. 22 (Springer, Berlin, Heidelberg 1983)

    Google Scholar 

  2. 2.

    R.V. Ambartzumian, V.S. Letokhov, E.A. Ryabov, N.V. Chekalin: Sov. Phys.-JETP Lett. 20, 273 (1974)

    Google Scholar 

  3. 3.

    S. Bittenson, P.L. Houston: J. Chem. Phys. 67, 4819 (1977)

    Google Scholar 

  4. 4.

    D.S. King, J.C. Stephenson: J. Am. Chem. Soc. 100, 7151 (1978)

    Google Scholar 

  5. 5.

    Aa.S. Sudbø, P.A. Schulz, E.R. Grant, Y.R. Shen, Y.T. Lee: J. Chem. Phys. 15, 912 (1979)

    Google Scholar 

  6. 6.

    A. Outhouse, P. Lawrence, M. Gauthier, P.A. Hackett: Appl. Phys. B 36, 63 (1985)

    Google Scholar 

  7. 7.

    M. Gauthier, C.G. Cureton, P.A. Hackett, C. Willis: Appl. Phys. B 28, 43 (1982)

    Google Scholar 

  8. 8.

    M. Gauthier, A. Outhouse, Y. Ishikawa, K.O. Kutschke, P.A. Hackett: Appl. Phys. B 35, 173 (1984)

    Google Scholar 

  9. 9.

    G.I. Abdushelishvili, O.N. Avatkov, V.N. Bagratashvili, V.Yu. Baranov, A.B. Bakhtadze, E.P. Velikhov, V.M. Vetsko, I.G. Gverdtsiteli, V.S. Dolzhikov, G.G. Esadze, S.A. Kazakov, Yu.R. Kolomiiskii, V.S. Letokhov, S.V. Pigul'skii, V.D. Pis'mennyi, E.A. Ryabov, G.I. Tkeshelashvili: Sov. J. Quantum Electron. 12, 459 (1982)

    Google Scholar 

  10. 10.

    S. Arai, K. Sugita, P.H. Ma, Y. Ishikawa, H. Kaetsu, S. Isomura: Chem. Phys. Lett. 151, 516 (1988)

    Google Scholar 

  11. 11.

    S. Arai, K. Sugita, P.H. Ma, Y. Ishikawa, H. Kaetsu, S. Isomura: Appl. Phys. B 48, 427 (1989)

    Google Scholar 

  12. 12.

    P.H. Ma, K. Sugita, S. Arai: Chem. Phys. Lett. 137, 590 (1987)

    Google Scholar 

  13. 13.

    P.H. Ma, K. Sugita, S. Arai: Appl. Phys. B 49, 503 (1989)

    Google Scholar 

  14. 14.

    P.H. Ma, K. Sugita, S. Arai: Appl. Phys. B 50, 385 (1990)

    Google Scholar 

  15. 15.

    P.H. Ma, K. Sugita, S. Arai: Appl. Phys. B 51, 103 (1990)

    Google Scholar 

  16. 16.

    P.H. Ma, S. Arai: Chin. Sci. Bull. 35, 14 (1990)

    Google Scholar 

  17. 17.

    K. Sugita, P. Ma, Y. Ishikawa, S. Arai: Appl. Phys. B 52, 266 (1991)

    Google Scholar 

  18. 18.

    W. Fuss, W.E. Schmid: Ber. Bunsenges. Phys. Chem. 83, 1148 (1979)

    Google Scholar 

  19. 19.

    C. D'Ambrosio, W. Fuss, K.L. Kompa, W.E. Schmid, S. Trusin: Infrared Phys. 29, 479 (1989)

    Google Scholar 

  20. 20.

    A.V. Evseev, A.A. Puretskii: Sov. J. Quantum Electron. 15, 689 (1985)

    Google Scholar 

  21. 21.

    M. Zaki El-Sabban, B.J. Zwolinski: J. Mol. Spectry. 22, 23 (1967)

    Google Scholar 

  22. 22.

    E.K. Plyler, N. Acquista: J. Res. Natl. Bur. Std. U.S. 48, 92 (1952)

    Google Scholar 

  23. 23.

    R.J.S. Morrison, R.F. Loring, R.L. Farley, E.R. Grand: J. Chem. Phys. 75, 148 (1981)

    Google Scholar 

  24. 24.

    A.H. Nielsen, T.G. Burke, P.J.H. Woltz, E.A. Jones: J. Chem. Phys. 20, 596 (1952)

    Google Scholar 

  25. 25.

    The relation between a beam cross section y (cm2) and distance x (cm) from a lens is roughly expressed by the following equation: y=(2.9x 2/15000)−(6.96x/100)+8.00. The position of the cell is x=60 at the front and x=260 at the exit. The following experimental relations can be derived from Fig. 5 (the laser line used, 9P(30)): log10 12Pd=1.40F−6.95, log10 13Pd=1.00F−4.34, where F is the fluence (J cm−2).

  26. 25a.

    The photolysis zone was decomposed into 200 pieces with a thickness of 1 cm along the beam direction. The 12C and 13C yields per pulse correspond to \(\sum\limits_i {^{12} P_d } \cdot y^i \cdot [^{12} CBrClF_2 ] and \sum\limits_i {^{13} P_d } \cdot y^i \cdot [^{13} CBrClF_2 ]\), respectively. The carbon yields may increase slightly and the 13C-atom fraction decreases in the 9P(28) line of Table 1

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hattori, M., Ishikawa, Y., Mizuta, K. et al. 13C-selective infrared multiple-photon decomposition study of CBrClF2 . Appl. Phys. B 55, 413–418 (1992).

Download citation


  • 82.50.-m