Skip to main content
Log in

Laser ionization mass spectrometry in inorganic trace analysis

  • Review
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Summary

Among the different spectrometric techniques for trace analysis Laser Ionization Mass Spectrometry (LIMS) is well established as a trace analytical method. With the LIMS technique the sample material is evaporated and ionized by means of a focused pulsed laser in a laser microplasma, which is formed in the spot area of the irradiated sample. All chemical elements in the sample materials are evaporated and ionized in the laser plasma. The ions formed are separated according to their mass and energy by a time-of-flight, quadrupole or double focusing mass spectrometer. In this review the characteristics and analytical features, some recent developments and applications of laser ionization mass spectrometry in inorganic trace analysis are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Honig RE, Woolston JR (1963) Appl Phys Lett 2:138–139

    Google Scholar 

  2. Honig RE (1963) Appl Phys Lett 3:8–11

    Google Scholar 

  3. Dumas JL (1967) Method Phys Anal 64:47–49

    Google Scholar 

  4. Ban VS, Knox BE (1969) Int J Mass Spectrom Ion Phys 3:131–141

    Google Scholar 

  5. Beam EC (1973) An investigation of the laser source mass spectrometer, Thesis, Pennsylvania State University, University Microfilms Order No. 74-4215

  6. Dietze H-J, Zahn H (1972) Exp Techn Phys 20:389–400

    Google Scholar 

  7. Maksimov GA, Larin NV (1976) Usp Khim (USSR) 45:2121–2125

    Google Scholar 

  8. Kovalev ID, Maksimov GA, Suchkov AI, Larin NV (1978) Int J Mass Spectrom Ion Phys 27:101–137

    Google Scholar 

  9. Conzemius RJ, Capellen JM (1980) Int J Mass Spectrom Ion Phys 34:197–271

    Google Scholar 

  10. Hurst GS, Payne MG, Kramer SD, Young JP (1979) Rev Mod Phys 51:767–819

    Google Scholar 

  11. Letokhov VS (1978) Fiz Nauk 125:57–60

    Google Scholar 

  12. Smith DH, Young JP, Shaw RW (1989) Mass Spectrom Rev 8:345

    Google Scholar 

  13. Phipps CR, Dreyfus RW (1992) Laser ionization mass analysis, Wiley, New York (in press)

    Google Scholar 

  14. Demtröder W, Jantz W (1970) Plasma Phys 12:691–703

    Google Scholar 

  15. Shibanov AN (1985) In: Letokhov VS (ed) Laser analytical spectrochemistry, Adam Hilger, Bristol, pp 353–376

    Google Scholar 

  16. Zahn H, Dietze H-J (1976) Int J Mass Spectrom Ion Phys 22:111–120

    Google Scholar 

  17. Megrue G (1970) Recent developments in mass spectrometry, Proceedings of the International Conference on Mass Spectroscopy, Kyoto, Japan 8.–12. 9. 1969, pp 654–655

  18. Dennemont J, Jaccard J, Landry J-C (1985) Int J Environ Anal Chem 21:115–127

    Google Scholar 

  19. Yamamoto T, Munakata T, Nomiya Y, Tsukakoshi M, Kasuya T (1984) Jpn J Appl Phys 23:1336

    Google Scholar 

  20. Heinen HJ, Wechsung R, Vogt H, Hillenkamp F, Kaufmann R (1979) In: Demtröder W (ed) Laserspektroskopie. Springer, Berlin Heidelberg New York, pp 257–272

    Google Scholar 

  21. Jansen JAJ, Witmer AW (1982) Spectrochim Acta 3B:483–491

    Google Scholar 

  22. Ramendik GI, Manzon BM, Tjurin DA, Benyaev NE, Komleva AA (1987) Talanta 34:61–62

    Google Scholar 

  23. Ramendik GI (1990) Fresenius J Anal Chem 337:772–776

    Google Scholar 

  24. Tjurin DA, Ramendik GI, Tschernoglasova GI (1989) Zh Anal Khim (USSR) 44:2157–2165

    Google Scholar 

  25. Adams FJ (1983) Spectrochim Acta 38B:1379–1393

    Google Scholar 

  26. Surkyn P, Adams FJ (1982) Trace Microprobe Techn 1:79–114

    Google Scholar 

  27. Beusen JM, Surkyn P, Gijbels R, Adams F (1983) Spectrochim Acta 38B:843–851

    Google Scholar 

  28. Bingham RA, Salter PZ (1976) Anal Chem 48:1735–1740

    Google Scholar 

  29. Bykovskii YuA, Schuravlev GI, Belousov VI, Gladskoi VM, Degtjarev VG, Kolosov YuN, Nevolin VN (1978) Fiz Plasm 4:323–331

    Google Scholar 

  30. Belousov VI (1984) Anal Pure Materials 28:34–43

    Google Scholar 

  31. Matus L, Seufert HM, Jochum KP (1988) Int J Mass Spectrom Ion Proc 84:101–111

    Google Scholar 

  32. Bykovskii YuA, Schuravlev GI, Gladskoi VM, Degtjarev VG, Nevolin VN (1978) Zh Tekn Fiz (USSR) 48:382–385

    Google Scholar 

  33. Heumann KG (1988) In: Adams F, Gijbels R, Van Grieken R (ed) Inorganic mass spectrometry, Wiley, New York, pp 301–348

    Google Scholar 

  34. Jochum KP, Matus L, Seufert HM (1988) Fresenius Z Anal Chem 331:136–139

    Google Scholar 

  35. Dietze H-J, Opauszky I (1979) Isotopenpraxis 15:309–312

    Google Scholar 

  36. Dietze H-J, Becker JS (1987) „Beiträge zur Clusterforschung“ ZfI-Mitt 134:5–174

    Google Scholar 

  37. Martin TP (1986) Angew Chem 98:197–212

    Google Scholar 

  38. Duncan MA, Rouvray DH (1989) Sci Am 60:60–65

    Google Scholar 

  39. Seifert G, Becker JS, Dietze H-J (1988) Int J Mass Spectrom Ion Proc 84:121–133

    Google Scholar 

  40. Fürstenau N, Hillenkamp F (1981) Int J Mass Spectrom Ion Phys 37:135–151

    Google Scholar 

  41. Michiels F, Celis A, Gijbels R (1982) In: Heinrich KFJ (ed) Microbeam analysis. San Francisco Press, San Francisco, pp 383–388

    Google Scholar 

  42. Michiels F, Celis A, Gijbels R (1983) Int J Mass Spectrom Ion Phys 47:23–26

    Google Scholar 

  43. Becker JS, Dietze H-J (1985) Int J Mass Spectrom Ion Proc 67:57–65

    Google Scholar 

  44. Fürstenau N (1981) Fresenius Z Anal Chem 308:201–205

    Google Scholar 

  45. Fürstenau N, Hillenkamp F, Nitsche R (1979) Int J Mass Spectrom Ion Phys 31:85–91

    Google Scholar 

  46. Michiels F, Celis A, Gijbels R (1979) Int J Mass Spectrom Ion Phys 31:89

    Google Scholar 

  47. Dietze H-J, Becker JS, Opauszky I, Matus L, Nyary I, Frecska J (1983) Mikrochimica Acta III:263–270

    Google Scholar 

  48. Dietze H-J, Becker JS (1988) Int J Mass Spectrom Ion Proc 82:R1-R5

    Google Scholar 

  49. Dietze H-J, Becker JS (1988) Int J Mass Spectrom Ion Proc 82:47–53

    Google Scholar 

  50. Becker JS, Dietze H-J (1986) Int J Mass Spectrom Ion Proc 73:157–166

    Google Scholar 

  51. Becker JS, Dietze H-J (1988) Int J Mass Spectrom Ion Proc 82:287–289

    Google Scholar 

  52. Dennemont J, Landry J-C, Jaccard J (1982) Chimica 42:405–412

    Google Scholar 

  53. Dennemont J, Landry J-Cl, Chevalley J-Y, Jaccard J (1989) Analusis 17:139–142

    Google Scholar 

  54. Kroto HW, Health JR, O'Brien SC, Curl CF, Smalley RE (1985) Nature (London) 318:162–163

    Google Scholar 

  55. Michiels E, Gijbels R (1983) Spectrochim Acta 38B:1347–1354

    Google Scholar 

  56. Michiels E, Gijbels R (1984) Anal Chem 56:1115–1121

    Google Scholar 

  57. Nadahara S, Kikuchi T, Furuya K, Furuya S, Hoshino K (1985) Mikrochim Acta [Wien] I:157–166

    Google Scholar 

  58. Vanderborgh NE, Jones CER (1983) Anal Chem 55:527–532

    Google Scholar 

  59. Linton RW, Musselman IH, Bruynseels F, Simons DS (1987) Microbeam Anal 22:161–166

    Google Scholar 

  60. Dietze H-J, Becker S (1985) Fresenius Z Anal Chem 321: 490–492

    Google Scholar 

  61. Voigt H, Heinen H-J, Meier S, Wechsung R (1981) Fresenius Z Anal Chem 308:195–200

    Google Scholar 

  62. Devyatykh GG, Maksimov GA, Suchkov AI, Larin NV (1975) Zh Anal Khim 30:664

    Google Scholar 

  63. Eloy JF (1986) Scanning Electron Microsc 4:1243–1253

    Google Scholar 

  64. Boriskin AI, Eremenko VM, Ljalko IS, Brjuchanov AS, Cmijan OD, Bykovskii YuA (1983) Prib Sist Upr 1:26–29

    Google Scholar 

  65. Leybold-Heraeus GmbH (1982) Köln, FRG, Application, pp 12–18

  66. Heinen H-J, Meier S, Voigt H, Wechsung R (1983) Int J Mass Spectrom Ion Phys 47:19–22

    Google Scholar 

  67. Feigl P, Schueler B, Hillenkamp F (1983) Int J Mass Spectrom Ion Phys 47:15

    Google Scholar 

  68. Feigl P, Krueger FR, Schueler B (1984) Mikrochim Acta 2:85–96

    Google Scholar 

  69. Verbuecken AH, Bruynseels FJ, Van Grieken R, Adams F (1988) In: Adams F, Gijbels R, Van Grieken R (ed) Inorganic mass spectrometry, Wiley, New York, pp 173–194

    Google Scholar 

  70. Mamyrin BA, Karataev VI, Shmikk DV, Zagulin VA (1973) Sov Phys JETP 37:45–48

    Google Scholar 

  71. Utley A (1990) Microelectronic manufacturing and testing, pp 27–28

  72. Dingle T, Griffiths BW, Ruckman JC (1981) Vacuum 31:571–573

    Google Scholar 

  73. Eloy JF (1978) Microsc Acta Suppl 2:307–317

    Google Scholar 

  74. Eloy JF (1984) J Phys 45:C2 265–269

    Google Scholar 

  75. Stefani R (1981) Trends Anal Chem 1:84

    Google Scholar 

  76. Gladskoi VM, Belousov VI (1980) Electron Industry (USSR) 11:95–98

    Google Scholar 

  77. Basova TA, Boriskin AI, Brjuchanov AS, Bykovskii YuA, Jeremenko VM, Nevolin VN (1987) High Pure Materials (USSR) 3:49–55

    Google Scholar 

  78. Sanderson TK, Mapper D, Farren J (1984) AERE Harwell Report No. AERE-R 11113

  79. Dietze H-J, Becker JS, Opauszky I, Matus L, Nyary I, Frecska J (1981) ZfI-Mitt 48:3–48

    Google Scholar 

  80. Beske HE (1988) Fresenius Z Anal Chem 331:150–153

    Google Scholar 

  81. Adams F, Vertes A (1990) Fresenius J Anal Chem 337:638–647

    Google Scholar 

  82. Bykovskii YuA, Basova TA, Belousov VI, Gladskoi VM, Gorshkov VV, Degtjarev VG, Laptev JD, Nevolin VN (1976) Zh Anal Khim USSR 31:2092–2096

    Google Scholar 

  83. Dietze H-J, Becker JS (1991) In: Vertes A, Gijbels R, Adams F (eds) Laser microprobe mass analysis. Wiley, New York (in press)

    Google Scholar 

  84. Mauney T, Adams F (1984) Sci Total Environ 36:215–224

    Google Scholar 

  85. Bruynseels F, Storms H, Tavares T, Van Grieken R (1990) J Environ Anal Chem 337:755–762

    Google Scholar 

  86. Valerio F (1984) Spectrosc Int J 3:427–430

    Google Scholar 

  87. Hirche H, Heinrichs J, Scharfer HE, Schramm M (1981) Fresenius Z Anal Chem 308:224–228

    Google Scholar 

  88. Kupka KD, Schropp WW, Schiller Chr, Hillenkamp F (1981) Fresenius Z Anal Chem 308:229–233

    Google Scholar 

  89. Hillenkamp F, Unsöld E, Kaufmann R, Nitsche R (1975) Appl Phys 8:341–348

    Google Scholar 

  90. Verbueken AH, Bruynseels FJ, Van Grieken RE (1985) Biomed Mass Spectrom 12:438–463

    Google Scholar 

  91. Wieser P, Wurster R, Haas U (1981) Fresenius Z Anal Chem 308:260–269

    Google Scholar 

  92. Kaufmann R, Wieser P, Wurster R (1980) Scanning Electron Microsc II:607–622

    Google Scholar 

  93. Kaufmann R, Wieser P (1980) In: Heinrich KFJ (ed) Characterization of particles, NBS Spec Publ 533, Washington DC, pp 199–223

  94. Conzemius RJ, Simon DS, Shankai Zhao, Byrd GD (1983) In: Gooley R (ed) Microbeam analysis, San Francisco Press, San Francisco, pp 301–328

    Google Scholar 

  95. Kaufmann R (1991) LIMS reference & citation index '91, University of Düsseldorf, FRG

    Google Scholar 

  96. Kohler VL, Harris A, Wallach ER (1989) Microbeam analysis, San Francisco Press, San Francisco, pp 359–363

    Google Scholar 

  97. Briukhanov AS, Boriskin AI, Bykovskii YuA, Briomenko VM, Yarimenko VM (1983) Int J Mass Spectrom Ion Phys 47:35–38

    Google Scholar 

  98. Kovalev ID, Larin NV, Potapov AM, Sutschkov AI (1985) Zh Anal Khim 40:1971–1977

    Google Scholar 

  99. Conzemius RJ, Svec HJ (1978) Anal Chem 50:1854–1860

    Google Scholar 

  100. Huang LQ, Conzemius RJ, Houk RS (1987) Appl Spectrosc 41:667–670

    Google Scholar 

  101. Hamer E, Gerhard W, Plog C, Kaufmann R (1981) Fresenius Z Anal Chem 308:287–289

    Google Scholar 

  102. Singh S (1987) Nature 329:183–184

    Google Scholar 

  103. Svec H-J (1984) Anal Chem Symp Ser 19:89–101

    Google Scholar 

  104. Becker JS, Dietze H-J (1991) Proceedings SPIE's Technical Symposium on Microelectronic Processing Integration '91, 9–13 September 1991, San José, CA, USA

  105. Schueler B, Odom RW (1987) J Appl Phys 61:4652–4661

    Google Scholar 

  106. Daniel WM, Delorenzo DJ, Wilson HR (1988) Mikrobeam analysis, San Francisco Press, San Francisco, pp 301–328

    Google Scholar 

  107. Cerezo A, Grovenor CRM, Smith GDW (1986) J Phys Coll C2:309–311

    Google Scholar 

  108. Nishikawa O, Nomura E, Kawada E, Oida K (1986) J Phys Coll C2:297–302

    Google Scholar 

  109. Adachi T, Kuroda T, Nakamura S (1986) J Phys Coll C2:293–296

    Google Scholar 

  110. Spurny KR, Schörmann J, Kaufmann R (1981) Fresenius Z Anal Chem 308:274–279

    Google Scholar 

  111. Sanderson TK (1985) Anal Proceed 22:118–119

    Google Scholar 

  112. Michiels E, Van Vaeck L, Gijbels R (1984) Scann Electron Microsc 3:1111–1128

    Google Scholar 

  113. Eloy JF, Leley M, Unsöld E (1983) Int J Mass Spectrom Ion Phys 47:39–42

    Google Scholar 

  114. Weinke HH, Michiels F, Gijbels R (1983) Int J Mass Spectrom Ion Proc 47:43–46

    Google Scholar 

  115. Bykovskii YuA, Schuravlev GI, Gladskoi VM, Degtjarev VG, Nevolin VN (1978) Zh Anal Khim 48:382–385

    Google Scholar 

  116. Steel EB, Simons DS, Small JA, Newbury DE (1984) Microbeam analysis, San Francisco Press, San Francisco, pp 27–30

    Google Scholar 

  117. Englert P, Herpes U (1980) Inorg Nucl Chem Lett 16:37–43

    Google Scholar 

  118. Dietze H-J, Becker JS (1985) ZfI-Mitt 101:5–60

    Google Scholar 

  119. Morelli JJ, Hercules DM, Lyons PC, Palmer CA, Fletcher JD (1988) Mikrochim Acta 3:105–118

    Google Scholar 

  120. Kosztolanyi C, Eloy JF, Bertrand JM (1986) Bull Mineral 109:265–268

    Google Scholar 

  121. Mahavadi KK, Smith G, Milne WI (1985) Thin Solid Films 124:237–274

    Google Scholar 

  122. Grasserbauer M, Stingeder G, Pötzl H, Guerrero E (1986) Fresenius Z Anal Chem 323:421–449

    Google Scholar 

  123. Simons DS (1988) Appl Surf Sci 31:103–117

    Google Scholar 

  124. Heinen HJ, Holm R, Storp S (1984) Fresenius Z Anal Chem 319:606–610

    Google Scholar 

  125. Van Doveren H (1984) Spectrochim Acta 39B:1513–1515

    Google Scholar 

  126. Southon MJ, Harris A, Kohler V, Mullock SJ, Wallach ER, Dingle T, Griffiths BW (1985) In: Springer Series in Chemical Physics 44: Proceeding of the Fifth International Conference on SIMS, Washington, p 198

  127. Smith GJ, Eagle DJ, Milne WI (1985) Appl Surf Sci 22/23: 930–934

    Google Scholar 

  128. Conzemius RJ, Schmidt FA, Svec H-J (1981) Anal Chem 53:1899–1902

    Google Scholar 

  129. Hall PM, Morabito JM, Poate JM (1976) Thin Solid Films 23:107–109

    Google Scholar 

  130. Jochum KP, Seufert HM, Matus L (1991) In: Proc of the 12th International Mass Spectrometry Conference, Amsterdam, August 26–30

  131. Van Vaeck L, Gijbels R (1990) Fresenius J Anal Chem 337:743–754

    Google Scholar 

  132. Becker JS, Dietze H-J, Keßler G, Bauer H-D, Pompe W (1990) Z Phys B — Condensed Matter 81:47–51

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, J.S., Dietze, H.J. Laser ionization mass spectrometry in inorganic trace analysis. Fresenius J Anal Chem 344, 69–86 (1992). https://doi.org/10.1007/BF00325119

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00325119

Keywords

Navigation