Skip to main content
Log in

The sugar beet mitochondrial gene for the ATPase alpha-subunit: sequence, transcription and rearrangements in cytoplasmic male-sterile plants

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

We have characterized the mitochondrial atpA (the alpha subunit of F1-ATPase) gene from male-fertile cytoplasm (cv TK81-0) of sugar beet. The gene is 1518-bp long and encodes a polypeptide of 506 amino acids. The atpA mRNA sequence is modified by three C-to-U RNA editing events, all of which alter the encoded protein sequences. In order to examine the genome organization of the atpA locus in cytoplasmic male-sterile (CMS) sugar beet, atpA-containing clones were isolated from Owen CMS (TK81-MS) and a different source of CMS [I-12CMS(2)] cytoplasm respectively. The sequences of the atpA coding region from TK81-MS and I-12CMS(2) are identical to each other and to the corresponding TK81-0 sequence. However, the TK81-0 and TK81-MS loci diverge completely 47 bp upstream of the initiation codon, resulting in different 5′ transcript termini for the two genes. On the other hand, the point of divergence between the TK81-0 and I-12CMS(2) atpA genes was found to occur after 393 bp 3′ to the TAA stop codon. Our results also show the 3′-flanking sequences of I-12CMS(2) atpA to be present elsewhere in the mitochondrial genomes of TK81-0, TK81-MS and I-12CMS(2), suggesting the possible involvement of these repeated DNA elements in the sequence rearrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André CP, Levy A, Walbot V (1992) Trends Genet 8:128–132

    Google Scholar 

  • Bailey-Serres J, Hanson DK, Fox TD, Leaver CJ (1986) Cell 47:567–576

    Google Scholar 

  • Boutin V, Pannenbecker G, Ecke W, Schewe G, Saumitou-Laprade P, Jean R, Vernet Ph, Michaelis G (1987) Theor Appl Genet 73:625–629

    Google Scholar 

  • Braun CJ, Levings CS III (1985) Plant Physiol 79:571–577

    Google Scholar 

  • Brown GG, Auchincloss AH, Covello PS, Gray MW, Menassa R, Singh M (1991) Mol Gen Genet 228:345–355

    Google Scholar 

  • Covello PS, Gray MW (1989) Nature 341:662–666

    Google Scholar 

  • Duchenne M, Lejeune B, Fouillard P, Quetier F (1989) Theor Appl Genet 78:633–640

    Google Scholar 

  • Gualberto JM, Lamattina L, Bonnard G, Weil J-H, Grienenberger J-M (1989) Nature 341:660–662

    Google Scholar 

  • Halldén C, Bryngelsson T, Bosemark NO (1988) Theor Appl Genet 75:561–568

    Google Scholar 

  • Hansen BM, Marcker KA (1984) Nucleic Acids Res 12:4747–4756

    Google Scholar 

  • Hanson MR (1991) Annu Rev Genet 25:461–486

    Google Scholar 

  • Henikoff S (1984) Gene 28:351–359

    Google Scholar 

  • Isaac PG, Brennicke A, Dunbar SM, Leaver CJ (1985) Curr Genet 10:321–328

    Google Scholar 

  • Köhler RK, Lössl A, Zetsche K (1990) Nucleic Acids Res 18:4588

    Google Scholar 

  • Laver HK, Reynolds SJ, Moneger F, Leaver CJ (1991) Plant J 1:185–193

    Google Scholar 

  • Leaver CJ, Gray MW (1982) Annu Rev Plant Physiol 33:373–402

    Google Scholar 

  • Liu AW, Narayanan KK, André CP, Kaleikau EK, Walbot V (1992) Curr Genet 21:507–513

    Google Scholar 

  • Makaroff CA, Apel IJ, Palmer JD (1990) Plant Mol Biol 15:735–746

    Google Scholar 

  • Mann V, McIntosh L, Theurer C, Hirschberg J (1989) Theor Appl Genet 78:293–297

    Google Scholar 

  • Mann V, Ekstein I, Nissen H, Hiser C, McIntosh L, Hirschberg J (1991) Plant Mol Biol 17:559–566

    Google Scholar 

  • Mikami T, Sugiura M, Kinoshita T (1984) Curr Genet 8:319–322

    Google Scholar 

  • Mikami T, Kishima Y, Sugiura M, Kinoshita T (1985) Theor Appl Genet 71:166–171

    Google Scholar 

  • Mikami T, Harada T, Kinoshita T (1986) Curr Genet 10:695–700

    Google Scholar 

  • Morikami A, Nakamura K (1987) J Biochem 101:967–976

    Google Scholar 

  • Owen FV (1942) Am J Bot 29:692

    Google Scholar 

  • Owen FV (1945) J Agric Res 71:423–440

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Saumitou-Laprade P, Pannenbecker G, Boutin-Stadler V, Michaelis G, Vernet P (1991) Theor Appl Genet 81:533–536

    Google Scholar 

  • Schuster W, Brennicke A (1986) Mol Gen Genet 204:29–35

    Google Scholar 

  • Schuster W, Hiesel R, Isaac PG, Leaver CJ, Brennicke A (1986) Nucleic Acids Res 14:5943–5954

    Google Scholar 

  • Schuster W, Ternes R, Knoop V, Hiesel R, Wissinger B, Brennicke A (1991) Curr Genet 20:397–404

    Google Scholar 

  • Senda M, Harada T, Mikami T, Sugiura M, Kinoshita T (1991) Curr Genet 19:175–181

    Google Scholar 

  • Siculella L, Palmer JD (1988) Nucleic Acids Res 16:3787–3799

    Google Scholar 

  • Vera A, Matsubayashi T, Sugiura M (1992) Mol Gen Genet 233:151–156

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by H. Kössel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senda, M., Mikami, T. & Kinoshita, T. The sugar beet mitochondrial gene for the ATPase alpha-subunit: sequence, transcription and rearrangements in cytoplasmic male-sterile plants. Curr Genet 24, 164–170 (1993). https://doi.org/10.1007/BF00324681

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00324681

Key words

Navigation