Current Genetics

, Volume 24, Issue 1–2, pp 38–44 | Cite as

Cloning and expression of Hormoconis resinae glucoamylase P cDNA in Saccharomyces cerevisiae

  • Arja E. I. Vainio
  • Helena T. Torkkeli
  • Tiina Tuusa
  • Sirpa A. Aho
  • B. Richard Fagerström
  • Matti P. Korhola
Original Articles


A cDNA coding for glucoamylase P of Hormoconis resinae was cloned using a synthetic oligonucleotide probe coding for a peptide fragment of the purified enzyme and polyclonal anti-glucoamylase antibodies. Nucleotide-sequence analysis revealed an open reading frame of 1848 base pairs coding for a protein of 616 amino-acid residues. Comparison with other fungal glucoamylase amino-acid sequences showed homologies of 37–48%. The glucoamylase cDNA, when introduced into Saccharomyces cerevisiae under the control of the yeast ADC1 promoter, directed the secretion of active glucoamylase P into the growth medium.

Key words

Glucoamylase Gene cloning Hormoconis resinae Saccharomyces cerevisiae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ammerer G (1983) In: Wu R, Grossman L, Moldave K (eds) Methods Enzymol 101:192–201Google Scholar
  2. Ashikari T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, Tanaka T, Amachi T, Yoshizumi H (1985) Agric Biol Chem 49:2521–2523Google Scholar
  3. Ashikara T, Nakamura N, Tanaka Y, Kiuchi N, Shibano Y, Tanaka T, Amachi T, Yoshizumi H (1986) Agric Biol Chem 50:957–964Google Scholar
  4. Aviv H, Leder P (1972) Proc Natl Acad Sci USA 69:1408–1412Google Scholar
  5. Ballance DJ (1986) Yeast 2:229–236Google Scholar
  6. Beggs JD (1978) Nature 275:104–109Google Scholar
  7. Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523Google Scholar
  8. Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Biochemistry 18:5294–5299Google Scholar
  9. Dente L, Cesareni G, Cortese R (1983) Nucleic Acids Res 11:1645–1655Google Scholar
  10. Dohmen RJ, Strasser AWM, Dahlems UM, Hollenberg CP (1990) Gene 95:111–121Google Scholar
  11. Fagerström R, Vainio A, Suoranta K, Pakula T, Kalkkinen N, Torkkeli H (1990) J Gen Microbiol 136:913–920Google Scholar
  12. Gubler U, Hoffman BJ (1983) Gene 25:263–269Google Scholar
  13. Gurr SJ, Unkles SE, Kinghorn JR (1987) The structure and organization of nuclear genes of filamentous fungi. In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. IRL Press, Oxford, pp 93–139Google Scholar
  14. Hamilton R, Watanabe CK, de Boer HA (1987) Nucleic Acids Res 15:3581–3593Google Scholar
  15. Hanahan D (1983) J Mol Biol 166:557–580Google Scholar
  16. Hashimoto H, Morikawa H, Yamada Y, Kimura A (1985) Appl Microbiol Biotechnol 21:336–339Google Scholar
  17. Hejne G von (1983) Eur J Biochem 133:17–21Google Scholar
  18. Innis MA, Holland MJ, McCabe PC, Cole GE, Wittman VP, Tal R, Watt KWK, Gelfand DH, Holland JP, Meade JH (1985) Science 228:21–26Google Scholar
  19. Irniger S, Egli CM, Braus GH (1991) Mol Cell Biol 11:3060–3069Google Scholar
  20. Itoh T, Ohtsuki I, Yamashita I, Fukui S (1987) J Bacteriol 169:4171–4176Google Scholar
  21. Joutsjoki V, Torkkeli T (1992) FEMS Microbiol Lett 99:237–244Google Scholar
  22. Kozak M (1981) Nucleic Acids Res 12:857–872Google Scholar
  23. Laemmli UK (1970) Nature 227:680–685Google Scholar
  24. Liljeström PL (1985) Nucleic Acids Res 13:7257–7268Google Scholar
  25. Jiljeström-Suominen PL, Joutsjoki V, Korhola M (1988) Appl Env Microbiol 54:245–249Google Scholar
  26. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  27. Marshall JJ (1972) Wallerstein Labs Commun 35:49–98Google Scholar
  28. McCleary BV, Anderson MA (1980) Carbohydr Res 86:77–96Google Scholar
  29. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  30. de Mot R, van Dijk K, Donkers A, Verachtert H (1985) Appl Microbiol Biotechnol 22:222–226Google Scholar
  31. Nunberg JH, Meade JH, Cole G, Lawyer FC, McCabe P, Schweickart V, Tal R, Wittman VP, Flatgaard JE, Innis MA (1984) Mol Cell Biol 4:2306–2315Google Scholar
  32. Panchal CJ, Russell J, Sills AM, Stewart GG (1984) Food Technol 38:99–106Google Scholar
  33. Sanger F, Nicklen S, Coulsen AR (1977) Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  34. Suominen PL (1988) Characterization and applications of the yeast MEL1 gene. PhD thesis, University of HelsinkiGoogle Scholar
  35. Svensson B, Sierks MR, Jespersen H, Søgaard M (1991) Structure-function relationships in amylases. In: Friedman RB (ed) Biotechnology of amylodextrin oligosaccharides. American chemical society, Washington, DC, pp 128–143Google Scholar
  36. Tubb RS, Liljeström PL (1986) J Inst Brew 92:588–590Google Scholar
  37. Yamashita I, Itoh T, Fukui S (1985a) Appl Microbiol Biotechnol 23:130–133Google Scholar
  38. Yamashita I, Suzuki K, Fukui S (1985b) J Bacteriol 161:567–573Google Scholar
  39. Yamashita I, Nakamura M, Fukui S (1987) J Bacteriol 169:2142–2149Google Scholar
  40. Zagursky RJ, Berman ML, Baumeister K, Lomax N (1986) Gene Anal Tech 2:89–94Google Scholar
  41. Zaret KS, Sherman F (1982) Cell 28:563–573Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Arja E. I. Vainio
    • 1
  • Helena T. Torkkeli
    • 1
  • Tiina Tuusa
    • 1
  • Sirpa A. Aho
    • 1
  • B. Richard Fagerström
    • 1
  • Matti P. Korhola
    • 1
  1. 1.Research LaboratoriesAlko LtdHelsinkiFinland

Personalised recommendations