Skip to main content
Log in

Efficient ultraviolet photorefraction in LiNbO3

  • Pyroelectric And Ferroelectric Oxides
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A nominally undoped LiNbO3 crystal with a slightly broadened absorption edge is used to study beam coupling effects in the UV at 351 nm. At this wavelength the crystal exhibits a diffusion-dominated charge transport mechanism, which allows steady state beam amplification of up to 700 times, comparable to BaTiO3 in the visible. The used crystal material was characterized by an absorption coefficient α=2.68 cm−1 at 351 nm and a maximal gain coefficient Г=13.94 cm−1. This high gain value in the UV can be attributed to a hole diffusion-dominated charge transport mechanism together with a low bulk photovoltaic effect. We measured photovoltaic fields of the order of 550 V/cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Montemezzani, J. Fousek, P. Günter, J. Stankowska: Appl. Phys. Lett. 56, 2367 (1990)

    Google Scholar 

  2. R. Orlowski, E. Krätzig: Solid State Commun. 27, 1351 (1978)

    Google Scholar 

  3. E. Krätzig, R. Orlowski: Appl. Phys. 15, 133 (1978)

    Google Scholar 

  4. J.P. Huignard, J.P. Herriau, F. Micheron: Spring Meeting of the Electrochemical Society, Washington, DC, Extended Abstracts 428, 1064 (1976)

    Google Scholar 

  5. D.W. Vahey: J. Appl. Phys. 46, 3510 (1975)

    Google Scholar 

  6. G.C. Valley: J. Appl. Phys. 59, 2363 (1986)

    Google Scholar 

  7. F.P. Strohkendl, J.M.C. Jonathan, R.W. Hellwarth: Opt. Lett. 11, 312 (1986)

    Google Scholar 

  8. M.B. Klein, G.C. Valley: J. Appl. Phys. 57, 4901 (1985)

    Google Scholar 

  9. F. Laeri, T. Tschudi, J. Albers: Opt. Commun. 47, 387 (1983)

    Google Scholar 

  10. A. Krummins, A. Sternberg: In Electro-optic and Photorefractive Materials, ed. by P. Günter (Springer, Berlin, Heidelberg 1987) p. 75

    Google Scholar 

  11. D.L. Staebler, J.J. Amodei: J. Appl. Phys. 43, 1042 (1972)

    Google Scholar 

  12. A.M. Glass, D. von der Linde: Appl. Phys. Lett. 25, 233 (1974)

    Google Scholar 

  13. N.V. Kuktharev, V.B. Markov, S. Odoulov, M.S. Soskin, V.L. Vinetskii: Ferroelectrics 22, 949 (1979)

    Google Scholar 

  14. N. Kuktharev, Sov. Tech. Phys. Lett. 2, 438 (1976)

    Google Scholar 

  15. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, A. Räuber: Appl. Phys. 12, 355 (1977)

    Google Scholar 

  16. G.A. Brost, R.A. Motes, J.T. Rotge: J. Opt. Soc. Am. B 5, 1879 (1988)

    Google Scholar 

  17. P. Günter, H.J. Eichler: In Electro-optic and Photorefractive Materials ed. by P. Günter (Springer Berlin, Heidelberg 1987) p. 218

    Google Scholar 

  18. H. Kogelnik: Bell Syst. Tech. J. 48, 2909 (1969)

    Google Scholar 

  19. N. Kuktharev, S. Odoulov: Opt. Commun. 32, 183 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungen, R., Angelow, G., Laeri, F. et al. Efficient ultraviolet photorefraction in LiNbO3 . Appl. Phys. A 55, 101–103 (1992). https://doi.org/10.1007/BF00324609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00324609

PACS

Navigation