Skip to main content
Log in

Response of a BaTiO3 phase conjugate mirror to broadband and narrowband radiation

  • Pyroelectric And Ferroelectric Oxides
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The bandwidth of a BaTiO3 self-pumped phase conjugate mirror is measured in three different ways. 1) The crystal is exposed to infrared light with a phase change that is sinusoidal in time and the degree of phase modulation on the reflected wave is measured. As the modulation frequency is increased from 0.1 to 3 GHz, the modulation transfer function of the phase conjugate mirror decreases by a factor of 2. 2) The crystal is exposed to visible light from a laser operated both in a single longitudinal mode and in multiple longitudinal modes. When the laser bandwidth is increased from 20 MHz to 2 GHz the reflectivity of the phase conjugate mirror increases by up to a factor of 7. 3) A laser cavity is formed with the crystal as one end mirror and the lasing bandwidth is measured. Depending on the exact conditions, lasing bandwidths range from 2 to 240 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Jain, K. Stenersen: Picosecond pulse operation of a dye laser containing a phase-conjugating mirror. Opt. Lett. 9, 546 (1984)

    Google Scholar 

  2. M. Cronin-Golomb, S.-K. Kwong, A. Yariv: Multicolor passive (self-pumped) phase conjugation. Appl. Phys. Lett. 44, 727 (1984)

    Google Scholar 

  3. M. Cronin-Golomb, D.Z. Anderson: Cancelling beam deflection in an acousto-optic frequency shifter using a self-pumped phase conjugating mirror. Appl. Phys. Lett. 47, 346 (1985)

    Google Scholar 

  4. R.R. Stephens, R.C. Lind, C.R. Giuliano: Phase conjugate master oscillator-power amplifier using BaTiO3 and AlGaAs semiconductor diode lasers. Appl. Phys. Lett. 50, 647 (1987)

    Google Scholar 

  5. S. Sternklar, S. Weiss, M. Segev, B. Fischer: Beam coupling and locking of lasers using photorefractive four-wave mixing. Opt. Lett. 11, 528 (1986)

    Google Scholar 

  6. M. Cronin-Golomb, A. Yariv, I. Ury: Coherent coupling of diode lasers by phase conjugation. Appl. Phys. Lett. 48, 1240 (1986)

    Google Scholar 

  7. G. Hamel de Montchenault, B. Loiseaux, J.P. Huignard: Amplification of high bandwidth signals through two-wave mixing in photorefractive Bi12SiO20 crystals. Appl. Phys. Lett. 50, 1794 (1987)

    Google Scholar 

  8. D.J. Webb, L. Solymar: Amplification of temporally modulated signal beams by two-wave mixing in Bi12SiO20. J. Opt. Soc. Am. B 7, 2369 (1990)

    Google Scholar 

  9. M. Cronin-Golomb, J. Paslaski, A. Yariv: Vibration resistance, short coherence length operation, and mode-locked pumping in passive phase conjugate mirrors. Appl. Phys. Lett. 47, 1131 (1985)

    Google Scholar 

  10. J.O. White, G.C. Valley, R.A. McFarlane: Coherent coupling of pulsed dye oscillators using nonlinear phase conjugation. Appl. Phys. Lett. 50, 880 (1987)

    Google Scholar 

  11. J. Feinberg: Interferometer with a self-pumped phase-conjugating mirror. Opt. Lett. 8, 569 (1983)

    Google Scholar 

  12. J. Feinberg: Self-pumped, continuous-wave phase conjugator using internal reflection. Opt. Lett. 7, 486 (1982)

    Google Scholar 

  13. K. MacDonald: Private communication

  14. A.M.C. Smout, R.W. Eason, M.C. Gower: Regular oscillations and self-pulsating in self-pumped BaTiO3. Opt. Comm. 59, 77 (1986)

    Google Scholar 

  15. P. Gunter, E. Voit, M.Z. Zha, J. Albers: Self pulsation and optical chaos in self-pumped photorefractive BaTiO3. Opt. Comm. 55, 210 (1985)

    Google Scholar 

  16. This crystal was grown by B. Wechsler and D. Rytz

  17. A.V. Nowak, T.R. Moore, R.A. Fisher: Observations of internal beam production in barium titanate phase conjugators. J. Opt. Soc. Am. B 5, 1864 (1989)

    Google Scholar 

  18. G.J. Dunning, D.M. Pepper, M.B. Klein: Control of self-pumped phased conjugate reflectivity using incoherent erasure. Opt. Lett. 15, 99 (1990)

    Google Scholar 

  19. D. Mahgerefteh, J. Feinberg: Explanation of the apparent sublinear photoconductivity of photorefractive barium titanate. Phys. Rev. Lett. 64, 2195 (1990)

    Google Scholar 

  20. D. Mahgerefteh: Private communication

  21. M. Cronin-Golomb, B. Fischer, J. Nilsen, J.O. White, A. Yariv: Laser with dynamic holographic intracavity distortion correction capability. Appl. Phys. Lett. 41, 219 (1982)

    Google Scholar 

  22. R.A. McFarlane, D.G. Steel: Laser oscillator using resonator with self-pumped phase-conjugate mirror. Opt. Lett. 8, 208 (1983)

    Google Scholar 

  23. W.B. Whitten, J.M. Ramsey: Self-scanning of a dye laser due to feedback from a BaTiO3 phase-conjugate reflector. Opt. Lett. 9, 44 (1984)

    Google Scholar 

  24. A. Litvinenko, S. Odoulov: Copper-vapor laser with self-starting LiNbO3 nonlinear mirror. Opt. Lett. 9, 68 (1984)

    Google Scholar 

  25. J. Feinberg, G.D. Bacher: Self-scanning of a continuous-wave dye laser having a phase-conjugating resonator cavity. Opt. Lett. 9, 420 (1984)

    Google Scholar 

  26. J.M. Ramsey, W.B. Whitten: Phase-conjugate feedback into a continuous-wave ring dye laser. Opt. Lett. 10, 362 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, J.O. Response of a BaTiO3 phase conjugate mirror to broadband and narrowband radiation. Appl. Phys. A 55, 82–90 (1992). https://doi.org/10.1007/BF00324606

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00324606

PACS

Navigation