Skip to main content
Log in

Steady holographic gratings in semiconductor multiple quantum wells

  • Semiconductors
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A theoretical model based on the Dember mechanism is proposed to describe the steady state photorefractive gratings generated in semiconductor multiple quantum wells (MQW). It has been applied to an GaAs/AlGaAs MQW in parallel configuration (external electric field applied parallel to the MQW layers) for which recent experimental data are available. The model predicts a dependence of the first-order diffraction efficiency on the applied field in qualitative accordance with experiments, including the occurrence of saturation at high field values. Absolute values of the efficiencies are in good agreement with the experimental ones. Finally, high second-order diffraction efficiencies, associated with the development of a perpendicular space charge field, are also predicted by the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Günter, J.P. Huignard (eds.): Photorefractive Materials and Applications (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  2. M. Glick, F.K. Reinhart, G. Weimann, W. Schlapp: Appl. Phys. Lett. 48, 989 (1986)

    Google Scholar 

  3. J.S. Weiner, D.A.B. Miller, D.S. Chemla: Appl. Phys. Lett. 50, 842 (1987)

    Google Scholar 

  4. J.E. Zucker, T.L. Hendrickson, C.A. Burrus: Appl. Phys. Lett. 52, 945 (1988)

    Google Scholar 

  5. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, D.A. Burrus: Phys. Rev. B 32, 1043 (1985)

    Google Scholar 

  6. A.M. Glass, D.D. Nolte, D.H. Olson, G.E. Doran, D.S. Chemla, W.H. Knox: Opt. Lett. 15, 264 (1990)

    Google Scholar 

  7. D.D. Nolte, D.H. Olson, G.E. Doran, W.H. Knox, A.M. Glass: J. Opt. Soc. Am. B 7, 2217 (1990)

    Google Scholar 

  8. D.D. Nolte, Q. Wang, M.R. Melloch: Appl. Phys. Lett. 58, 2067 (1991)

    Google Scholar 

  9. Q.N. Wang, D.D. Nolte, M.R. Melloch: Appl. Phys. Lett. 59, 256 (1991)

    Google Scholar 

  10. D.D. Nolte, M.R. Melloch: Proc, 3th Int'l Meeting Photorefractive Materials, Effects and Devices (Beverly, MA 1991)

  11. H. Dember: Phys. Zeits. 32, 554 (1931)

    Google Scholar 

  12. J.I. Pankove: Optical Processes in Semiconductors (Dover, New York 1975)

    Google Scholar 

  13. W.H. Knox, C. Hirlimann, D.A.B. Miller, J. Shah, D.S. Chemla, C.V. Shank: Phys. Rev. Lett. 56, 1191 (1986)

    Google Scholar 

  14. J.S. Blakemore: J. Appl. Phys. 53, R 123 (1982)

    Google Scholar 

  15. G. Picoli, P. Gravey, C. Ozkul, V. Vieux: J. Appl. Phys. 66, 3798 (1989)

    Google Scholar 

  16. A. Yariv: Optical Electronics (Holt-Saunders, Philadelphia 1985)

    Google Scholar 

  17. D.A.B. Miller, D.S. Chemla, Schmitt-Rink: Phys. Rev. B 33, 6976 (1986)

    Google Scholar 

  18. Q.N. Wang. D.D. Nolte, M.R. Melloch: Proc. 3th Int'l Meeting Photorefractive Materials, Effects and Devices (Beverly, MA 1991)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrascosa, M., Agulló-Rueda, F. & Agulló-López, F. Steady holographic gratings in semiconductor multiple quantum wells. Appl. Phys. A 55, 25–29 (1992). https://doi.org/10.1007/BF00324597

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00324597

PACS

Navigation