Skip to main content
Log in

Formation of interface bubbles in bonded silicon wafers: A thermodynamic model

  • Surfaces And Multilayers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A thermodynamic model of the formation of unbonded areas or bubbles generated at the interface of bonded silicon wafers in the temperature range of 200–800°C is presented. Within this model it is assumed that the desorption of hydrocarbon contamination at the silicon wafer surfaces leads to small hydrocarbon molecules which are mobile at the bonding interface. When the vapor pressure generated by these molecules overcomes the interface bonding strength, interface bubbles are nucleated. These bubbles grow by incorporating further hydrocarbon and also possible hydrogen molecules. The model semiquantitatively explains all the essential features of interface bubble formation observed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.P. Maszara: J. Electrochem. Soc. 138, 341 (1991)

    Google Scholar 

  2. J. Haisma, G.A.C.M. Spierings, U.K.P. Biermann, J.A. Pals: Jpn. J. Appl. Phys. 28, 1426 (1989)

    Google Scholar 

  3. J.B. Lasky: Appl. Phys. Lett. 48, 78 (1986)

    Google Scholar 

  4. H. Ohashi, K. Furukawa, M. Atsuta, A. Nakagawa, K. Imamura: Technical Digest Int'l Electron Devices Meeting, IEDM 87 (IEEE, New York 1987) p. 678

    Google Scholar 

  5. M. Shimbo, K. Furukawa, K. Fukuda, T. Tanzawa: J. Appl. Phys. 60, 2987 (1986)

    Google Scholar 

  6. E. Bassous: IEEE Trans. ED-25, 1178 (1978)

    Google Scholar 

  7. K. Petersen, P. Barth, J. Poydock, J. Brown, J. Mallon Jr., J. Bryzek: Tech. Digest, IEEE Solid State Sensors and Actuator Workshop, Hilton Head Island, SC (1988) p. 144

  8. R. Stengl, K.-Y. Ahn, U. Gösele: Jpn. J. Appl. Phys. 27, L2364 (1988)

  9. R. Stengl, U. Gösele: U. S. Patent No. 4,962,879

  10. V. Lehmann, K. Mitani, R. Stengl, T. Mii, U. Gösele: Jpn. J. Appl. Phys. 28, L2141 (1989)

  11. R. Stengl, T.Y. Tan, U. Gösele: Jpn. J. Appl. Phys. 28, 1735 (1989)

    Google Scholar 

  12. T. Abe, M. Nakano, T. Ito: Silicon-On-Insulator Technology and Devices, ed. by D.N. Schmidt (The Electrochemical Society, Pennington 1990) PV 90-6, p. 61

    Google Scholar 

  13. K. Mitani, V. Lehmann, R. Stengl, D. Feijoo, U. Gösele, H.Z. Massoud: Jpn. J. Appl. Phys. 30, 615 (1991)

    Google Scholar 

  14. K. Mitani, D. Feijoo, G. Cha, U. Gösele: Jpn. J. Appl. Phys. 31 (1992)

  15. S. Pahlke: Semiconductor Silicon 1990, ed. by H.R. Huff, K.G. Barraclough, J.-I. Nishizawa (The Electrochemical Society, Pennington 1990) PV 90-7, p. 1029

    Google Scholar 

  16. O. Okabayashi, H. Shirotori, H. Sakurazawa, E. Kanda, T. Yokoyama, M. Kawashima: J. Crystal Growth 103, 456 (1990)

    Google Scholar 

  17. R.J. Roark, W.C. Young: Formulas for Stress and Strain, 5th edn. (McGraw-Hill, New York 1975) p. 451

    Google Scholar 

  18. M.L. Williams: J. Appl. Polymer Sci. 13, 29 (1969)

    Google Scholar 

  19. G. Cha, W.-S. Yang, D. Feijoo, W.J. Taylor, R. Stengl, U. Gösele: Proc. 1st Int'l Symp. Semiconductor Wafer Bonding Sci. Tech. and Applications, Phoenix, AZ (1991) in press

  20. V.I. Mossakovskii, M.T. Rybka: J. Appl. Math. and Mech. 28, 1277 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitani, K., Gösele, U.M. Formation of interface bubbles in bonded silicon wafers: A thermodynamic model. Appl. Phys. A 54, 543–552 (1992). https://doi.org/10.1007/BF00324337

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00324337

PACS

Navigation